Abstract:Fine-tuning LLMs on benign data can still degrade alignment and adversarial robustness, yet direct analysis of the role of fine-tuning objectives in shaping these safety outcomes remain limited. We present a controlled comparison of six fine-tuning objectives -- Supervised Fine-Tuning, Direct Preference Optimization, Conditional Fine-Tuning, Inoculation Prompting, Odds Ratio Preference Optimization, and KL-regularized fine-tuning -- holding data, domain, architecture, and optimization fixed. Across closed-form reasoning and open-ended generation tasks, we find that objective choice induces systematic, scale-dependent shifts along the safety-capability frontier. At small training budgets, robustness is similar across objectives but capability differs. At larger budgets, objectives diverge sharply: supervised and preference-based tuning tightly couple capability gains to increased adversarial vulnerability and persona drift, while objectives that constrain learning signals -- especially ORPO and KL-regularization -- substantially mitigate both. Fine-tuning objectives therefore matter little for safety at small scales but become a primary driver of adversarial robustness and latent persona stability as training scale increases.
Abstract:Pretraining corpora contain extensive discourse about AI systems, yet the causal influence of this discourse on downstream alignment remains poorly understood. If prevailing descriptions of AI behaviour are predominantly negative, LLMs may internalise corresponding behavioural priors, giving rise to self-fulfilling misalignment. This paper provides the first controlled study of this hypothesis by pretraining 6.9B-parameter LLMs with varying amounts of (mis)alignment discourse. We find that discussion of AI contributes to misalignment. Upsampling synthetic training documents about AI misalignment leads to a notable increase in misaligned behaviour. Conversely, upsampling documents about aligned behaviour reduces misalignment scores from 45% to 9%. We consider this evidence of self-fulfilling alignment. These effects are dampened, but persist through post-training. Our findings establish the study of how pretraining data shapes alignment priors, or alignment pretraining, as a complement to post-training. We recommend practitioners pretrain for alignment as well as capabilities. Our models and datasets are available at alignmentpretraining.ai