Abstract:Human behavioural data in psychophysics has been used to elucidate the underlying mechanisms of many cognitive processes, such as attention, sensorimotor integration, and perceptual decision making. Visual working memory has particularly benefited from this approach: analyses of VWM errors have proven crucial for understanding VWM capacity and coding schemes, in turn constraining neural models of both. One poorly understood class of VWM errors are swap errors, whereby participants recall an uncued item from memory. Swap errors could arise from erroneous memory encoding, noisy storage, or errors at retrieval time - previous research has mostly implicated the latter two. However, these studies made strong a priori assumptions on the detailed mechanisms and/or parametric form of errors contributed by these sources. Here, we pursue a data-driven approach instead, introducing a Bayesian non-parametric mixture model of swap errors (BNS) which provides a flexible descriptive model of swapping behaviour, such that swaps are allowed to depend on both the probed and reported features of every stimulus item. We fit BNS to the trial-by-trial behaviour of human participants and show that it recapitulates the strong dependence of swaps on cue similarity in multiple datasets. Critically, BNS reveals that this dependence coexists with a non-monotonic modulation in the report feature dimension for a random dot motion direction-cued, location-reported dataset. The form of the modulation inferred by BNS opens new questions about the importance of memory encoding in causing swap errors in VWM, a distinct source to the previously suggested binding and cueing errors. Our analyses, combining qualitative comparisons of the highly interpretable BNS parameter structure with rigorous quantitative model comparison and recovery methods, show that previous interpretations of swap errors may have been incomplete.
Abstract:State-of-the-art sequence-to-sequence models often require autoregressive decoding, which can be highly expensive. However, for some downstream tasks such as out-of-distribution (OOD) detection and resource allocation, the actual decoding output is not needed just a scalar attribute of this sequence. In these scenarios, where for example knowing the quality of a system's output to predict poor performance prevails over knowing the output itself, is it possible to bypass the autoregressive decoding? We propose Non-Autoregressive Proxy (NAP) models that can efficiently predict general scalar-valued sequence-level attributes. Importantly, NAPs predict these metrics directly from the encodings, avoiding the expensive autoregressive decoding stage. We consider two sequence-to-sequence task: Machine Translation (MT); and Automatic Speech Recognition (ASR). In OOD for MT, NAPs outperform a deep ensemble while being significantly faster. NAPs are also shown to be able to predict performance metrics such as BERTScore (MT) or word error rate (ASR). For downstream tasks, such as data filtering and resource optimization, NAPs generate performance predictions that outperform predictive uncertainty while being highly inference efficient.