Abstract:The transformer architecture has catalyzed revolutionary advances in language modeling. However, recent architectural recipes, such as state-space models, have bridged the performance gap. Motivated by this, we examine the benefits of Convolution-Augmented Transformer (CAT) for recall, copying, and length generalization tasks. CAT incorporates convolutional filters in the K/Q/V embeddings of an attention layer. Through CAT, we show that the locality of the convolution synergizes with the global view of the attention. Unlike comparable architectures, such as Mamba or transformer, CAT can provably solve the associative recall (AR) and copying tasks using a single layer while also enjoying guaranteed length generalization. We also establish computational tradeoffs between convolution and attention by characterizing how convolution can mitigate the need for full attention by summarizing the context window and creating salient summary tokens to attend. Evaluations on real datasets corroborate our findings and demonstrate that CAT and its variations indeed enhance the language modeling performance.
Abstract:Recent successes in natural language processing have led to the proliferation of large language models (LLMs) by multiple providers. Each LLM offering has different inference accuracy, monetary cost, and latency, and their accuracy further depends on the exact wording of the question (i.e., the specific prompt). At the same time, users often have a limit on monetary budget and latency to answer all their questions, and they do not know which LLMs to choose for each question to meet their accuracy and long-term budget requirements. To navigate this rich design space, we propose TREACLE (Thrifty Reasoning via Context-Aware LLM and Prompt Selection), a reinforcement learning policy that jointly selects the model and prompting scheme while respecting the user's monetary cost and latency constraints. TREACLE uses the problem context, including question text embeddings (reflecting the type or difficulty of a query) and the response history (reflecting the consistency of previous responses) to make smart decisions. Our evaluations on standard reasoning datasets (GSM8K, CSQA, and LLC ) with various LLMs and prompts show that TREACLE enables cost savings of up to 85% compared to baselines while maintaining high accuracy. Importantly, it provides the user with the ability to gracefully trade off accuracy for cost.
Abstract:Transformer-based language models are trained on large datasets to predict the next token given an input sequence. Despite this simple training objective, they have led to revolutionary advances in natural language processing. Underlying this success is the self-attention mechanism. In this work, we ask: $\textit{What}$ $\textit{does}$ $\textit{a}$ $\textit{single}$ $\textit{self-attention}$ $\textit{layer}$ $\textit{learn}$ $\textit{from}$ $\textit{next-token}$ $\textit{prediction?}$ We show that training self-attention with gradient descent learns an automaton which generates the next token in two distinct steps: $\textbf{(1)}$ $\textbf{Hard}$ $\textbf{retrieval:}$ Given input sequence, self-attention precisely selects the $\textit{high-priority}$ $\textit{input}$ $\textit{tokens}$ associated with the last input token. $\textbf{(2)}$ $\textbf{Soft}$ $\textbf{composition:}$ It then creates a convex combination of the high-priority tokens from which the next token can be sampled. Under suitable conditions, we rigorously characterize these mechanics through a directed graph over tokens extracted from the training data. We prove that gradient descent implicitly discovers the strongly-connected components (SCC) of this graph and self-attention learns to retrieve the tokens that belong to the highest-priority SCC available in the context window. Our theory relies on decomposing the model weights into a directional component and a finite component that correspond to hard retrieval and soft composition steps respectively. This also formalizes a related implicit bias formula conjectured in [Tarzanagh et al. 2023]. We hope that these findings shed light on how self-attention processes sequential data and pave the path toward demystifying more complex architectures.
Abstract:Modern language models rely on the transformer architecture and attention mechanism to perform language understanding and text generation. In this work, we study learning a 1-layer self-attention model from a set of prompts and associated output data sampled from the model. We first establish a precise mapping between the self-attention mechanism and Markov models: Inputting a prompt to the model samples the output token according to a context-conditioned Markov chain (CCMC) which weights the transition matrix of a base Markov chain. Additionally, incorporating positional encoding results in position-dependent scaling of the transition probabilities. Building on this formalism, we develop identifiability/coverage conditions for the prompt distribution that guarantee consistent estimation and establish sample complexity guarantees under IID samples. Finally, we study the problem of learning from a single output trajectory generated from an initial prompt. We characterize an intriguing winner-takes-all phenomenon where the generative process implemented by self-attention collapses into sampling a limited subset of tokens due to its non-mixing nature. This provides a mathematical explanation to the tendency of modern LLMs to generate repetitive text. In summary, the equivalence to CCMC provides a simple but powerful framework to study self-attention and its properties.
Abstract:The key premise of federated learning (FL) is to train ML models across a diverse set of data-owners (clients), without exchanging local data. An overarching challenge to this date is client heterogeneity, which may arise not only from variations in data distribution, but also in data quality, as well as compute/communication latency. An integrated view of these diverse and concurrent sources of heterogeneity is critical; for instance, low-latency clients may have poor data quality, and vice versa. In this work, we propose FLASH(Federated Learning Across Simultaneous Heterogeneities), a lightweight and flexible client selection algorithm that outperforms state-of-the-art FL frameworks under extensive sources of heterogeneity, by trading-off the statistical information associated with the client's data quality, data distribution, and latency. FLASH is the first method, to our knowledge, for handling all these heterogeneities in a unified manner. To do so, FLASH models the learning dynamics through contextual multi-armed bandits (CMAB) and dynamically selects the most promising clients. Through extensive experiments, we demonstrate that FLASH achieves substantial and consistent improvements over state-of-the-art baselines -- as much as 10% in absolute accuracy -- thanks to its unified approach. Importantly, FLASH also outperforms federated aggregation methods that are designed to handle highly heterogeneous settings and even enjoys a performance boost when integrated with them.
Abstract:State-space models (SSMs), such as Mamba Gu & Dao (2034), have been proposed as alternatives to Transformer networks in language modeling, by incorporating gating, convolutions, and input-dependent token selection to mitigate the quadratic cost of multi-head attention. Although SSMs exhibit competitive performance, their in-context learning (ICL) capabilities, a remarkable emergent property of modern language models that enables task execution without parameter optimization, remain underexplored compared to Transformers. In this study, we evaluate the ICL performance of SSMs, focusing on Mamba, against Transformer models across various tasks. Our results show that SSMs perform comparably to Transformers in standard regression ICL tasks, while outperforming them in tasks like sparse parity learning. However, SSMs fall short in tasks involving non-standard retrieval functionality. To address these limitations, we introduce a hybrid model, \variant, that combines Mamba with attention blocks, surpassing individual models in tasks where they struggle independently. Our findings suggest that hybrid architectures offer promising avenues for enhancing ICL in language models.
Abstract:Modern classification problems exhibit heterogeneities across individual classes: Each class may have unique attributes, such as sample size, label quality, or predictability (easy vs difficult), and variable importance at test-time. Without care, these heterogeneities impede the learning process, most notably, when optimizing fairness objectives. Confirming this, under a gaussian mixture setting, we show that the optimal SVM classifier for balanced accuracy needs to be adaptive to the class attributes. This motivates us to propose CAP: An effective and general method that generates a class-specific learning strategy (e.g. hyperparameter) based on the attributes of that class. This way, optimization process better adapts to heterogeneities. CAP leads to substantial improvements over the naive approach of assigning separate hyperparameters to each class. We instantiate CAP for loss function design and post-hoc logit adjustment, with emphasis on label-imbalanced problems. We show that CAP is competitive with prior art and its flexibility unlocks clear benefits for fairness objectives beyond balanced accuracy. Finally, we evaluate CAP on problems with label noise as well as weighted test objectives to showcase how CAP can jointly adapt to different heterogeneities.
Abstract:Parameter-efficient tuning (PET) methods such as LoRA, Adapter, and Visual Prompt Tuning (VPT) have found success in enabling adaptation to new domains by tuning small modules within a transformer model. However, the number of domains encountered during test time can be very large, and the data is usually unlabeled. Thus, adaptation to new domains is challenging; it is also impractical to generate customized tuned modules for each such domain. Toward addressing these challenges, this work introduces PLUTO: a Plug-and-pLay modUlar Test-time domain adaptatiOn strategy. We pre-train a large set of modules, each specialized for different source domains, effectively creating a ``module store''. Given a target domain with few-shot unlabeled data, we introduce an unsupervised test-time adaptation (TTA) method to (1) select a sparse subset of relevant modules from this store and (2) create a weighted combination of selected modules without tuning their weights. This plug-and-play nature enables us to harness multiple most-relevant source domains in a single inference call. Comprehensive evaluations demonstrate that PLUTO uniformly outperforms alternative TTA methods and that selecting $\leq$5 modules suffice to extract most of the benefit. At a high level, our method equips pre-trained transformers with the capability to dynamically adapt to new domains, motivating a new paradigm for efficient and scalable domain adaptation.
Abstract:Test time adaptation is the process of adapting, in an unsupervised manner, a pre-trained source model to each incoming batch of the test data (i.e., without requiring a substantial portion of the test data to be available, as in traditional domain adaptation) and without access to the source data. Since it works with each batch of test data, it is well-suited for dynamic environments where decisions need to be made as the data is streaming in. Current test time adaptation methods are primarily focused on a single source model. We propose the first completely unsupervised Multi-source Test Time Adaptation (MeTA) framework that handles multiple source models and optimally combines them to adapt to the test data. MeTA has two distinguishing features. First, it efficiently obtains the optimal combination weights to combine the source models to adapt to the test data distribution. Second, it identifies which of the source model parameters to update so that only the model which is most correlated to the target data is adapted, leaving the less correlated ones untouched; this mitigates the issue of "forgetting" the source model parameters by focusing only on the source model that exhibits the strongest correlation with the test batch distribution. Experiments on diverse datasets demonstrate that the combination of multiple source models does at least as well as the best source (with hindsight knowledge), and performance does not degrade as the test data distribution changes over time (robust to forgetting).
Abstract:In Score based Generative Modeling (SGMs), the state-of-the-art in generative modeling, stochastic reverse processes are known to perform better than their deterministic counterparts. This paper delves into the heart of this phenomenon, comparing neural ordinary differential equations (ODEs) and neural stochastic differential equations (SDEs) as reverse processes. We use a control theoretic perspective by posing the approximation of the reverse process as a trajectory tracking problem. We analyze the ability of neural SDEs to approximate trajectories of the Fokker-Planck equation, revealing the advantages of stochasticity. First, neural SDEs exhibit a powerful regularizing effect, enabling $L^2$ norm trajectory approximation surpassing the Wasserstein metric approximation achieved by neural ODEs under similar conditions, even when the reference vector field or score function is not Lipschitz. Applying this result, we establish the class of distributions that can be sampled using score matching in SGMs, relaxing the Lipschitz requirement on the gradient of the data distribution in existing literature. Second, we show that this approximation property is preserved when network width is limited to the input dimension of the network. In this limited width case, the weights act as control inputs, framing our analysis as a controllability problem for neural SDEs in probability density space. This sheds light on how noise helps to steer the system towards the desired solution and illuminates the empirical success of stochasticity in generative modeling.