Abstract:This work addresses the challenge of forecasting urban water dynamics by developing a multi-input, multi-output deep learning model that incorporates both endogenous variables (e.g., water height or discharge) and exogenous factors (e.g., precipitation history and forecast reports). Unlike conventional forecasting, the proposed model, AquaCast, captures both inter-variable and temporal dependencies across all inputs, while focusing forecast solely on endogenous variables. Exogenous inputs are fused via an embedding layer, eliminating the need to forecast them and enabling the model to attend to their short-term influences more effectively. We evaluate our approach on the LausanneCity dataset, which includes measurements from four urban drainage sensors, and demonstrate state-of-the-art performance when using only endogenous variables. Performance also improves with the inclusion of exogenous variables and forecast reports. To assess generalization and scalability, we additionally test the model on three large-scale synthesized datasets, generated from MeteoSwiss records, the Lorenz Attractors model, and the Random Fields model, each representing a different level of temporal complexity across 100 nodes. The results confirm that our model consistently outperforms existing baselines and maintains a robust and accurate forecast across both real and synthetic datasets.
Abstract:Vertical federated learning (VFL) enables a service provider (i.e., active party) who owns labeled features to collaborate with passive parties who possess auxiliary features to improve model performance. Existing VFL approaches, however, have two major vulnerabilities when passive parties unexpectedly quit in the deployment phase of VFL - severe performance degradation and intellectual property (IP) leakage of the active party's labels. In this paper, we propose \textbf{Party-wise Dropout} to improve the VFL model's robustness against the unexpected exit of passive parties and a defense method called \textbf{DIMIP} to protect the active party's IP in the deployment phase. We evaluate our proposed methods on multiple datasets against different inference attacks. The results show that Party-wise Dropout effectively maintains model performance after the passive party quits, and DIMIP successfully disguises label information from the passive party's feature extractor, thereby mitigating IP leakage.
Abstract:Integrating low-power wearable Internet of Things (IoT) systems into routine health monitoring is an ongoing challenge. Recent advances in the computation capabilities of wearables make it possible to target complex scenarios by exploiting multiple biosignals and using high-performance algorithms, such as Deep Neural Networks (DNNs). There is, however, a trade-off between performance of the algorithms and the low-power requirements of IoT platforms with limited resources. Besides, physically larger and multi-biosignal-based wearables bring significant discomfort to the patients. Consequently, reducing power consumption and discomfort is necessary for patients to use IoT devices continuously during everyday life. To overcome these challenges, in the context of epileptic seizure detection, we propose a many-to-one signals knowledge distillation approach targeting single-biosignal processing in IoT wearable systems. The starting point is to get a highly-accurate multi-biosignal DNN, then apply our approach to develop a single-biosignal DNN solution for IoT systems that achieves an accuracy comparable to the original multi-biosignal DNN. To assess the practicality of our approach to real-life scenarios, we perform a comprehensive simulation experiment analysis on several state-of-the-art edge computing platforms, such as Kendryte K210 and Raspberry Pi Zero.