Abstract:This work addresses the challenge of forecasting urban water dynamics by developing a multi-input, multi-output deep learning model that incorporates both endogenous variables (e.g., water height or discharge) and exogenous factors (e.g., precipitation history and forecast reports). Unlike conventional forecasting, the proposed model, AquaCast, captures both inter-variable and temporal dependencies across all inputs, while focusing forecast solely on endogenous variables. Exogenous inputs are fused via an embedding layer, eliminating the need to forecast them and enabling the model to attend to their short-term influences more effectively. We evaluate our approach on the LausanneCity dataset, which includes measurements from four urban drainage sensors, and demonstrate state-of-the-art performance when using only endogenous variables. Performance also improves with the inclusion of exogenous variables and forecast reports. To assess generalization and scalability, we additionally test the model on three large-scale synthesized datasets, generated from MeteoSwiss records, the Lorenz Attractors model, and the Random Fields model, each representing a different level of temporal complexity across 100 nodes. The results confirm that our model consistently outperforms existing baselines and maintains a robust and accurate forecast across both real and synthetic datasets.
Abstract:The paper presents the PCGPT framework, an innovative approach to procedural content generation (PCG) using offline reinforcement learning and transformer networks. PCGPT utilizes an autoregressive model based on transformers to generate game levels iteratively, addressing the challenges of traditional PCG methods such as repetitive, predictable, or inconsistent content. The framework models trajectories of actions, states, and rewards, leveraging the transformer's self-attention mechanism to capture temporal dependencies and causal relationships. The approach is evaluated in the Sokoban puzzle game, where the model predicts items that are needed with their corresponding locations. Experimental results on the game Sokoban demonstrate that PCGPT generates more complex and diverse game content. Interestingly, it achieves these results in significantly fewer steps compared to existing methods, showcasing its potential for enhancing game design and online content generation. Our model represents a new PCG paradigm which outperforms previous methods.