Laboratory of LESIA, University of Biskra, Algeria
Abstract:Pedestrian Attribute Recognition (PAR) involves predicting fine-grained attributes such as clothing color, gender, and accessories from pedestrian imagery, yet is hindered by severe class imbalance, intricate attribute co-dependencies, and domain shifts. We introduce VLM-PAR, a modular vision-language framework built on frozen SigLIP 2 multilingual encoders. By first aligning image and prompt embeddings via refining visual features through a compact cross-attention fusion, VLM-PAR achieves significant accuracy improvement on the highly imbalanced PA100K benchmark, setting a new state-of-the-art performance, while also delivering significant gains in mean accuracy across PETA and Market-1501 benchmarks. These results underscore the efficacy of integrating large-scale vision-language pretraining with targeted cross-modal refinement to overcome imbalance and generalization challenges in PAR.




Abstract:Human face aging is irreversible process causing changes in human face characteristics such us hair whitening, muscles drop and wrinkles. Due to the importance of human face aging in biometrics systems, age estimation became an attractive area for researchers. This paper presents a novel method to estimate the age from face images, using binarized statistical image features (BSIF) and local binary patterns (LBP)histograms as features performed by support vector regression (SVR) and kernel ridge regression (KRR). We applied our method on FG-NET and PAL datasets. Our proposed method has shown superiority to that of the state-of-the-art methods when using the whole PAL database.