Abstract:This paper provides a comprehensive analysis and theoretical foundation for next-generation backscatter networks that move beyond communication and integrate RF location sensing capabilities. An end-to-end system model for wideband OFDM backscatter systems is derived, including detailed characterization of propagation channels, receiver chain impairments, RF tag operation, and unsynchronized network nodes. The theoretical system model is validated through experimental evaluation using actual hardware, demonstrating the detailed model's accuracy. A practical bistatic ranging method that can operate with unsynchronized nodes is presented, along with the Cram\'er-Rao Lower Bound (CRLB) derived to show the achievable performance limits. Our experimental results demonstrate the system performance for communication, RF sensing, and ranging, while also benchmarking against the derived theoretical limits. This analytical framework and experimental validation establish fundamental understanding of distributed, unsynchronized backscatter systems for future machine-type communication networks that are deployed in massive scale, while remaining energy-efficient.
Abstract:In this article, we study the joint communication and sensing (JCAS) paradigm in the context of millimeter-wave (mm-wave) mobile communication networks. We specifically address the JCAS challenges stemming from the full-duplex operation and from the co-existence of multiple simultaneous beams for communications and sensing purposes. To this end, we first formulate and solve beamforming optimization problems for hybrid beamforming based multiuser multiple-input and multiple-output JCAS systems. The cost function to be maximized is the beamformed power at the sensing direction while constraining the beamformed power at the communications directions, suppressing interuser interference and cancelling full-duplexing related self-interference (SI). We then also propose new transmitter and receiver beamforming solutions for purely analog beamforming based JCAS systems that maximize the beamforming gain at the sensing direction while controlling the beamformed power at the communications direction(s), cancelling the SI as well as eliminating the potential reflection from the communication direction and optimizing the combined radar pattern (CRP). Both closed-form and numerical optimization based formulations are provided. We analyze and evaluate the performance through extensive simulations, and show that substantial gains and benefits in terms of radar transmit gain, CRP, and SI suppression can be achieved with the proposed beamforming methods.