Abstract:Ensuring convergence of policy gradient methods in federated reinforcement learning (FRL) under environment heterogeneity remains a major challenge. In this work, we first establish that heterogeneity, perhaps counter-intuitively, can necessitate optimal policies to be non-deterministic or even time-varying, even in tabular environments. Subsequently, we prove global convergence results for federated policy gradient (FedPG) algorithms employing local updates, under a {\L}ojasiewicz condition that holds only for each individual agent, in both entropy-regularized and non-regularized scenarios. Crucially, our theoretical analysis shows that FedPG attains linear speed-up with respect to the number of agents, a property central to efficient federated learning. Leveraging insights from our theoretical findings, we introduce b-RS-FedPG, a novel policy gradient method that employs a carefully constructed softmax-inspired parameterization coupled with an appropriate regularization scheme. We further demonstrate explicit convergence rates for b-RS-FedPG toward near-optimal stationary policies. Finally, we demonstrate that empirically both FedPG and b-RS-FedPG consistently outperform federated Q-learning on heterogeneous settings.
Abstract:In this paper, we present the Federated Upper Confidence Bound Value Iteration algorithm ($\texttt{Fed-UCBVI}$), a novel extension of the $\texttt{UCBVI}$ algorithm (Azar et al., 2017) tailored for the federated learning framework. We prove that the regret of $\texttt{Fed-UCBVI}$ scales as $\tilde{\mathcal{O}}(\sqrt{H^3 |\mathcal{S}| |\mathcal{A}| T / M})$, with a small additional term due to heterogeneity, where $|\mathcal{S}|$ is the number of states, $|\mathcal{A}|$ is the number of actions, $H$ is the episode length, $M$ is the number of agents, and $T$ is the number of episodes. Notably, in the single-agent setting, this upper bound matches the minimax lower bound up to polylogarithmic factors, while in the multi-agent scenario, $\texttt{Fed-UCBVI}$ has linear speed-up. To conduct our analysis, we introduce a new measure of heterogeneity, which may hold independent theoretical interest. Furthermore, we show that, unlike existing federated reinforcement learning approaches, $\texttt{Fed-UCBVI}$'s communication complexity only marginally increases with the number of agents.
Abstract:In this paper, we perform a non-asymptotic analysis of the federated linear stochastic approximation (FedLSA) algorithm. We explicitly quantify the bias introduced by local training with heterogeneous agents, and investigate the sample complexity of the algorithm. We show that the communication complexity of FedLSA scales polynomially with the desired precision $\epsilon$, which limits the benefits of federation. To overcome this, we propose SCAFFLSA, a novel variant of FedLSA, that uses control variates to correct the bias of local training, and prove its convergence without assumptions on statistical heterogeneity. We apply the proposed methodology to federated temporal difference learning with linear function approximation, and analyze the corresponding complexity improvements.