Abstract:We introduce Mean-Field Trust Region Policy Optimization (MF-TRPO), a novel algorithm designed to compute approximate Nash equilibria for ergodic Mean-Field Games (MFG) in finite state-action spaces. Building on the well-established performance of TRPO in the reinforcement learning (RL) setting, we extend its methodology to the MFG framework, leveraging its stability and robustness in policy optimization. Under standard assumptions in the MFG literature, we provide a rigorous analysis of MF-TRPO, establishing theoretical guarantees on its convergence. Our results cover both the exact formulation of the algorithm and its sample-based counterpart, where we derive high-probability guarantees and finite sample complexity. This work advances MFG optimization by bridging RL techniques with mean-field decision-making, offering a theoretically grounded approach to solving complex multi-agent problems.
Abstract:In this paper, we present the Federated Upper Confidence Bound Value Iteration algorithm ($\texttt{Fed-UCBVI}$), a novel extension of the $\texttt{UCBVI}$ algorithm (Azar et al., 2017) tailored for the federated learning framework. We prove that the regret of $\texttt{Fed-UCBVI}$ scales as $\tilde{\mathcal{O}}(\sqrt{H^3 |\mathcal{S}| |\mathcal{A}| T / M})$, with a small additional term due to heterogeneity, where $|\mathcal{S}|$ is the number of states, $|\mathcal{A}|$ is the number of actions, $H$ is the episode length, $M$ is the number of agents, and $T$ is the number of episodes. Notably, in the single-agent setting, this upper bound matches the minimax lower bound up to polylogarithmic factors, while in the multi-agent scenario, $\texttt{Fed-UCBVI}$ has linear speed-up. To conduct our analysis, we introduce a new measure of heterogeneity, which may hold independent theoretical interest. Furthermore, we show that, unlike existing federated reinforcement learning approaches, $\texttt{Fed-UCBVI}$'s communication complexity only marginally increases with the number of agents.