Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:We define a quantum learning task called agnostic tomography, where given copies of an arbitrary state $\rho$ and a class of quantum states $\mathcal{C}$, the goal is to output a succinct description of a state that approximates $\rho$ at least as well as any state in $\mathcal{C}$ (up to some small error $\varepsilon$). This task generalizes ordinary quantum tomography of states in $\mathcal{C}$ and is more challenging because the learning algorithm must be robust to perturbations of $\rho$. We give an efficient agnostic tomography algorithm for the class $\mathcal{C}$ of $n$-qubit stabilizer product states. Assuming $\rho$ has fidelity at least $\tau$ with a stabilizer product state, the algorithm runs in time $n^{O(1 + \log(1/\tau))} / \varepsilon^2$. This runtime is quasipolynomial in all parameters, and polynomial if $\tau$ is a constant.

Via

Abstract:Recent work has shown that $n$-qubit quantum states output by circuits with at most $t$ single-qubit non-Clifford gates can be learned to trace distance $\epsilon$ using $\mathsf{poly}(n,2^t,1/\epsilon)$ time and samples. All prior algorithms achieving this runtime use entangled measurements across two copies of the input state. In this work, we give a similarly efficient algorithm that learns the same class of states using only single-copy measurements.

Via

Abstract:We give an algorithm that efficiently learns a quantum state prepared by Clifford gates and $O(\log(n))$ non-Clifford gates. Specifically, for an $n$-qubit state $\lvert \psi \rangle$ prepared with at most $t$ non-Clifford gates, we show that $\mathsf{poly}(n,2^t,1/\epsilon)$ time and copies of $\lvert \psi \rangle$ suffice to learn $\lvert \psi \rangle$ to trace distance at most $\epsilon$. This result follows as a special case of an algorithm for learning states with large stabilizer dimension, where a quantum state has stabilizer dimension $k$ if it is stabilized by an abelian group of $2^k$ Pauli operators. We also develop an efficient property testing algorithm for stabilizer dimension, which may be of independent interest.

Via

Abstract:We show that quantum states with "low stabilizer complexity" can be efficiently distinguished from Haar-random. Specifically, given an $n$-qubit pure state $|\psi\rangle$, we give an efficient algorithm that distinguishes whether $|\psi\rangle$ is (i) Haar-random or (ii) a state with stabilizer fidelity at least $\frac{1}{k}$ (i.e., has fidelity at least $\frac{1}{k}$ with some stabilizer state), promised that one of these is the case. With black-box access to $|\psi\rangle$, our algorithm uses $O\!\left( k^{12} \log(1/\delta)\right)$ copies of $|\psi\rangle$ and $O\!\left(n k^{12} \log(1/\delta)\right)$ time to succeed with probability at least $1-\delta$, and, with access to a state preparation unitary for $|\psi\rangle$ (and its inverse), $O\!\left( k^{3} \log(1/\delta)\right)$ queries and $O\!\left(n k^{3} \log(1/\delta)\right)$ time suffice. As a corollary, we prove that $\omega(\log(n))$ $T$-gates are necessary for any Clifford+$T$ circuit to prepare computationally pseudorandom quantum states, a first-of-its-kind lower bound.

Via

Figures and Tables:

Abstract:We give an efficient classical algorithm that recovers the distribution of a non-interacting fermion state over the computational basis. For a system of $n$ non-interacting fermions and $m$ modes, we show that $O(m^2 n^4 \log(m/\delta)/ \varepsilon^4)$ samples and $O(m^4 n^4 \log(m/\delta)/ \varepsilon^4)$ time are sufficient to learn the original distribution to total variation distance $\varepsilon$ with probability $1 - \delta$. Our algorithm empirically estimates the one- and two-mode correlations and uses them to reconstruct a succinct description of the entire distribution efficiently.

Via

Abstract:The classical shadows protocol, recently introduced by Huang, Keung, and Preskill [Nat. Phys. 16, 1050 (2020)], is a hybrid quantum-classical protocol that is used to predict target functions of an unknown quantum state. Unlike full quantum state tomography, the protocol requires only a few quantum measurements to make many predictions with a high success probability, and is therefore more amenable to implementation on near-term quantum hardware. In this paper, we study the effects of noise on the classical shadows protocol. In particular, we consider the scenario in which the quantum circuits involved in the protocol are subject to various known noise channels and derive an analytical upper bound for the sample complexity in terms of a generalized shadow norm for both local and global noise. Additionally, by modifying the classical post-processing step of the noiseless protocol, we define an estimator that remains unbiased in the presence of noise. As applications, we show that our results can be used to prove rigorous sample complexity upper bounds in the cases of depolarizing noise and amplitude damping.

Via