Abstract:Recent work has shown that one can efficiently learn fermionic Gaussian unitaries, also commonly known as nearest-neighbor matchcircuits or non-interacting fermionic unitaries. However, one could ask a similar question about unitaries that are near Gaussian: for example, unitaries prepared with a small number of non-Gaussian circuit elements. These operators find significance in quantum chemistry and many-body physics, yet no algorithm exists to learn them. We give the first such result by devising an algorithm which makes queries to a $n$-mode fermionic unitary $U$ prepared by at most $O(t)$ non-Gaussian gates and returns a circuit approximating $U$ to diamond distance $\varepsilon$ in time $\textrm{poly}(n,2^t,1/\varepsilon)$. This resolves a central open question of Mele and Herasymenko under the strongest distance metric. In fact, our algorithm is much more general: we define a property of unitary Gaussianity known as unitary Gaussian dimension and show that our algorithm can learn $n$-mode unitaries of Gaussian dimension at least $2n - O(t)$ in time $\textrm{poly}(n,2^t,1/\varepsilon)$. Indeed, this class subsumes unitaries prepared by at most $O(t)$ non-Gaussian gates but also includes several unitaries that require up to $2^{O(t)}$ non-Gaussian gates to construct. In addition, we give a $\textrm{poly}(n,1/\varepsilon)$-time algorithm to distinguish whether an $n$-mode unitary is of Gaussian dimension at least $k$ or $\varepsilon$-far from all such unitaries in Frobenius distance, promised that one is the case. Along the way, we prove structural results about near-Gaussian fermionic unitaries that are likely to be of independent interest.
Abstract:We define a quantum learning task called agnostic tomography, where given copies of an arbitrary state $\rho$ and a class of quantum states $\mathcal{C}$, the goal is to output a succinct description of a state that approximates $\rho$ at least as well as any state in $\mathcal{C}$ (up to some small error $\varepsilon$). This task generalizes ordinary quantum tomography of states in $\mathcal{C}$ and is more challenging because the learning algorithm must be robust to perturbations of $\rho$. We give an efficient agnostic tomography algorithm for the class $\mathcal{C}$ of $n$-qubit stabilizer product states. Assuming $\rho$ has fidelity at least $\tau$ with a stabilizer product state, the algorithm runs in time $n^{O(1 + \log(1/\tau))} / \varepsilon^2$. This runtime is quasipolynomial in all parameters, and polynomial if $\tau$ is a constant.
Abstract:Recent work has shown that $n$-qubit quantum states output by circuits with at most $t$ single-qubit non-Clifford gates can be learned to trace distance $\epsilon$ using $\mathsf{poly}(n,2^t,1/\epsilon)$ time and samples. All prior algorithms achieving this runtime use entangled measurements across two copies of the input state. In this work, we give a similarly efficient algorithm that learns the same class of states using only single-copy measurements.
Abstract:We give an algorithm that efficiently learns a quantum state prepared by Clifford gates and $O(\log(n))$ non-Clifford gates. Specifically, for an $n$-qubit state $\lvert \psi \rangle$ prepared with at most $t$ non-Clifford gates, we show that $\mathsf{poly}(n,2^t,1/\epsilon)$ time and copies of $\lvert \psi \rangle$ suffice to learn $\lvert \psi \rangle$ to trace distance at most $\epsilon$. This result follows as a special case of an algorithm for learning states with large stabilizer dimension, where a quantum state has stabilizer dimension $k$ if it is stabilized by an abelian group of $2^k$ Pauli operators. We also develop an efficient property testing algorithm for stabilizer dimension, which may be of independent interest.
Abstract:We show that quantum states with "low stabilizer complexity" can be efficiently distinguished from Haar-random. Specifically, given an $n$-qubit pure state $|\psi\rangle$, we give an efficient algorithm that distinguishes whether $|\psi\rangle$ is (i) Haar-random or (ii) a state with stabilizer fidelity at least $\frac{1}{k}$ (i.e., has fidelity at least $\frac{1}{k}$ with some stabilizer state), promised that one of these is the case. With black-box access to $|\psi\rangle$, our algorithm uses $O\!\left( k^{12} \log(1/\delta)\right)$ copies of $|\psi\rangle$ and $O\!\left(n k^{12} \log(1/\delta)\right)$ time to succeed with probability at least $1-\delta$, and, with access to a state preparation unitary for $|\psi\rangle$ (and its inverse), $O\!\left( k^{3} \log(1/\delta)\right)$ queries and $O\!\left(n k^{3} \log(1/\delta)\right)$ time suffice. As a corollary, we prove that $\omega(\log(n))$ $T$-gates are necessary for any Clifford+$T$ circuit to prepare computationally pseudorandom quantum states, a first-of-its-kind lower bound.