Abstract:High-quality video generation is crucial for many fields, including the film industry and autonomous driving. However, generating videos with spatiotemporal consistencies remains challenging. Current methods typically utilize attention mechanisms or modify noise to achieve consistent videos, neglecting global spatiotemporal information that could help ensure spatial and temporal consistency during video generation. In this paper, we propose the NoiseController, consisting of Multi-Level Noise Decomposition, Multi-Frame Noise Collaboration, and Joint Denoising, to enhance spatiotemporal consistencies in video generation. In multi-level noise decomposition, we first decompose initial noises into scene-level foreground/background noises, capturing distinct motion properties to model multi-view foreground/background variations. Furthermore, each scene-level noise is further decomposed into individual-level shared and residual components. The shared noise preserves consistency, while the residual component maintains diversity. In multi-frame noise collaboration, we introduce an inter-view spatiotemporal collaboration matrix and an intra-view impact collaboration matrix , which captures mutual cross-view effects and historical cross-frame impacts to enhance video quality. The joint denoising contains two parallel denoising U-Nets to remove each scene-level noise, mutually enhancing video generation. We evaluate our NoiseController on public datasets focusing on video generation and downstream tasks, demonstrating its state-of-the-art performance.
Abstract:Industrial Cyber-Physical Systems (ICPS) integrate the disciplines of computer science, communication technology, and engineering, and have emerged as integral components of contemporary manufacturing and industries. However, ICPS encounters various challenges in long-term operation, including equipment failures, performance degradation, and security threats. To achieve efficient maintenance and management, prognostics and health management (PHM) finds widespread application in ICPS for critical tasks, including failure prediction, health monitoring, and maintenance decision-making. The emergence of large-scale foundation models (LFMs) like BERT and GPT signifies a significant advancement in AI technology, and ChatGPT stands as a remarkable accomplishment within this research paradigm, harboring potential for General Artificial Intelligence. Considering the ongoing enhancement in data acquisition technology and data processing capability, LFMs are anticipated to assume a crucial role in the PHM domain of ICPS. However, at present, a consensus is lacking regarding the application of LFMs to PHM in ICPS, necessitating systematic reviews and roadmaps to elucidate future directions. To bridge this gap, this paper elucidates the key components and recent advances in the underlying model.A comprehensive examination and comprehension of the latest advances in grand modeling for PHM in ICPS can offer valuable references for decision makers and researchers in the industrial field while facilitating further enhancements in the reliability, availability, and safety of ICPS.