Abstract:The widespread integration of face recognition technologies into various applications (e.g., access control and personalized advertising) necessitates a critical emphasis on fairness. While previous efforts have focused on demographic fairness, the fairness of individual biological face components remains unexplored. In this paper, we focus on face component fairness, a fairness notion defined by biological face features. To our best knowledge, our work is the first work to mitigate bias of face attribute prediction at the biological feature level. In this work, we identify two key challenges in optimizing face component fairness: attribute label scarcity and attribute inter-dependencies, both of which limit the effectiveness of bias mitigation from previous approaches. To address these issues, we propose \textbf{B}ayesian \textbf{N}etwork-informed \textbf{M}eta \textbf{R}eweighting (BNMR), which incorporates a Bayesian Network calibrator to guide an adaptive meta-learning-based sample reweighting process. During the training process of our approach, the Bayesian Network calibrator dynamically tracks model bias and encodes prior probabilities for face component attributes to overcome the above challenges. To demonstrate the efficacy of our approach, we conduct extensive experiments on a large-scale real-world human face dataset. Our results show that BNMR is able to consistently outperform recent face bias mitigation baselines. Moreover, our results suggest a positive impact of face component fairness on the commonly considered demographic fairness (e.g., \textit{gender}). Our findings pave the way for new research avenues on face component fairness, suggesting that face component fairness could serve as a potential surrogate objective for demographic fairness. The code for our work is publicly available~\footnote{https://github.com/yliuaa/BNMR-FairCompFace.git}.
Abstract:Drought has become a critical global threat with significant societal impact. Existing drought monitoring solutions primarily focus on assessing drought severity using quantitative measurements, overlooking the diverse societal impact of drought from human-centric perspectives. Motivated by the collective intelligence on social media and the computational power of AI, this paper studies a novel problem of socially informed AI-driven drought estimation that aims to leverage social and news media information to jointly estimate drought severity and its societal impact. Two technical challenges exist: 1) How to model the implicit temporal dynamics of drought societal impact. 2) How to capture the social-physical interdependence between the physical drought condition and its societal impact. To address these challenges, we develop SIDE, a socially informed AI-driven drought estimation framework that explicitly quantifies the societal impact of drought and effectively models the social-physical interdependency for joint severity-impact estimation. Experiments on real-world datasets from California and Texas demonstrate SIDE's superior performance compared to state-of-the-art baselines in accurately estimating drought severity and its societal impact. SIDE offers valuable insights for developing human-centric drought mitigation strategies to foster sustainable and resilient communities.