Abstract:Embodied artificial intelligence (Embodied AI) plays a pivotal role in the application of advanced technologies in the intelligent era, where AI systems are integrated with physical bodies that enable them to perceive, reason, and interact with their environments. Through the use of sensors for input and actuators for action, these systems can learn and adapt based on real-world feedback, allowing them to perform tasks effectively in dynamic and unpredictable environments. As techniques such as deep learning (DL), reinforcement learning (RL), and large language models (LLMs) mature, embodied AI has become a leading field in both academia and industry, with applications spanning robotics, healthcare, transportation, and manufacturing. However, most research has focused on single-agent systems that often assume static, closed environments, whereas real-world embodied AI must navigate far more complex scenarios. In such settings, agents must not only interact with their surroundings but also collaborate with other agents, necessitating sophisticated mechanisms for adaptation, real-time learning, and collaborative problem-solving. Despite increasing interest in multi-agent systems, existing research remains narrow in scope, often relying on simplified models that fail to capture the full complexity of dynamic, open environments for multi-agent embodied AI. Moreover, no comprehensive survey has systematically reviewed the advancements in this area. As embodied AI rapidly evolves, it is crucial to deepen our understanding of multi-agent embodied AI to address the challenges presented by real-world applications. To fill this gap and foster further development in the field, this paper reviews the current state of research, analyzes key contributions, and identifies challenges and future directions, providing insights to guide innovation and progress in this field.
Abstract:Predicting influencers' views and public sentiment on social media is crucial for anticipating societal trends and guiding strategic responses. This study introduces a novel computational framework to predict opinion leaders' perspectives and the emotive reactions of the populace, addressing the inherent challenges posed by the unstructured, context-sensitive, and heterogeneous nature of online communication. Our research introduces an innovative module that starts with the automatic 5W1H (Where, Who, When, What, Why, and How) questions formulation engine, tailored to emerging news stories and trending topics. We then build a total of 60 anonymous opinion leader agents in six domains and realize the views generation based on an enhanced large language model (LLM) coupled with retrieval-augmented generation (RAG). Subsequently, we synthesize the potential views of opinion leaders and predicted the emotional responses to different events. The efficacy of our automated 5W1H module is corroborated by an average GPT-4 score of 8.83/10, indicative of high fidelity. The influencer agents exhibit a consistent performance, achieving an average GPT-4 rating of 6.85/10 across evaluative metrics. Utilizing the 'Russia-Ukraine War' as a case study, our methodology accurately foresees key influencers' perspectives and aligns emotional predictions with real-world sentiment trends in various domains.