Abstract:Reasoning-specialized models like OpenAI's 5.1 and DeepSeek-V3.2 allocate substantial inference compute to extended chain-of-thought (CoT) traces, yet reasoning tokens incur significant costs. How do different reasoning modalities of code, natural language, hybrid, or none do perform under token constraints? We introduce a framework that constrains models to reason exclusively through code, comments, both, or neither, then systematically ablates token budgets to 10\%, 30\%, 50\%, and 70\% of optimal. We evaluate four frontier models (GPT-5.1, Gemini 3 Flash, DeepSeek-V3.2, Grok 4.1) across mathematical benchmarks (AIME, GSM8K, HMMT). Our findings reveal: (1) \textbf{truncated reasoning can hurt} as DeepSeek-V3.2 achieves 53\% with no reasoning but only 17\% with truncated CoT at 50\% budget; (2) \textbf{code degrades gracefully} as Gemini's comments collapse to 0\% while code maintains 43-47\%; (3) \textbf{hybrid reasoning underperforms} single modalities; (4) \textbf{robustness is model-dependent} as Grok maintains 80-90\% at 30\% budget where OpenAI and DeepSeek collapse to 7-27\%. These results suggest incomplete reasoning chains actively mislead models, with implications for deploying reasoning-specialized systems under resource constraints.