Abstract:Recovering a 3D surface from its surface normal map, a problem known as normal integration, is a key component for photometric shape reconstruction techniques such as shape-from-shading and photometric stereo. The vast majority of existing approaches for normal integration handle only implicitly the presence of depth discontinuities and are limited to orthographic or ideal pinhole cameras. In this paper, we propose a novel formulation that allows modeling discontinuities explicitly and handling generic central cameras. Our key idea is based on a local planarity assumption, that we model through constraints between surface normals and ray directions. Compared to existing methods, our approach more accurately approximates the relation between depth and surface normals, achieves state-of-the-art results on the standard normal integration benchmark, and is the first to directly handle generic central camera models.
Abstract:Digital Twin (DT) technology is far from being comprehensive and mature, resulting in their piecemeal implementation in practice where some functions are automated by DTs, and others are still performed by humans. This piecemeal implementation of DTs often leaves practitioners wondering what roles (or functions) to allocate to DTs in a work system, and how might it impact humans. A lack of knowledge about the roles that humans and DTs play in a work system can result in significant costs, misallocation of resources, unrealistic expectations from DTs, and strategic misalignments. To alleviate this challenge, this paper answers the research question: When humans work with DTs, what types of roles can a DT play, and to what extent can those roles be automated? Specifically, we propose a two-dimensional conceptual framework, Levels of Digital Twin (LoDT). The framework is an integration of the types of roles a DT can play, broadly categorized under (1) Observer, (2) Analyst, (3) Decision Maker, and (4) Action Executor, and the extent of automation for each of these roles, divided into five different levels ranging from completely manual to fully automated. A particular DT can play any number of roles at varying levels. The framework can help practitioners systematically plan DT deployments, clearly communicate goals and deliverables, and lay out a strategic vision. A case study illustrates the usefulness of the framework.