Abstract:Simultaneous Localization and Mapping (SLAM) is an essential technology for the efficiency and reliability of unmanned robotic exploration missions. While the onboard computational capability and communication bandwidth are critically limited, the point cloud data handled by SLAM is large in size, attracting attention to data compression methods. To address such a problem, in this paper, we propose a new method for compressing point cloud maps by exploiting the Discrete Fourier Transform (DFT). The proposed technique converts the Digital Elevation Model (DEM) to the frequency-domain 2D image and omits its high-frequency components, focusing on the exploration of gradual terrains such as planets and deserts. Unlike terrains with detailed structures such as artificial environments, high-frequency components contribute little to the representation of gradual terrains. Thus, this method is effective in compressing data size without significant degradation of the point cloud. We evaluated the method in terms of compression rate and accuracy using camera sequences of two terrains with different elevation profiles.
Abstract:3D photoacoustic tomography (3D-PAT) using high-frequency hemispherical transducers offers near-omnidirectional reception and enhanced sensitivity to the finer structural details encoded in the high-frequency components of the broadband photoacoustic (PA) signal. However, practical constraints such as limited number of channels with bandlimited sampling rate often result in sparse and bandlimited sensors that degrade image quality. To address this, we revisit the 2D deep learning (DL) approach applied directly to sensor-wise PA radio-frequency (PARF) data. Specifically, we introduce sine activation into the DL model to restore the broadband nature of PARF signals given the observed band-limited and high-frequency PARF data. Given the scarcity of 3D training data, we employ simplified training strategies by simulating random spherical absorbers. This combination of sine-activated model and randomized training is designed to emphasize bandwidth learning over dataset memorization. Our model was evaluated on a leaf skeleton phantom, a micro-CT-verified 3D spiral phantom and in-vivo human palm vasculature. The results showed that the proposed training mechanism on sine-activated model was well-generalized across the different tests by effectively increasing the sensor density and recovering the spatiotemporal bandwidth. Qualitatively, the sine-activated model uniquely enhanced high-frequency content that produces clearer vascular structure with fewer artefacts. Quantitatively, the sine-activated model exhibits full bandwidth at -12 dB spectrum and significantly higher contrast-to-noise ratio with minimal loss of structural similarity index. Lastly, we optimized our approach to enable fast enhanced 3D-PAT at 2 volumes-per-second for better practical imaging of a free-moving targets.