Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
Abstract:This paper presents an Impedance Primitive-augmented hierarchical reinforcement learning framework for efficient robotic manipulation in sequential contact tasks. We leverage this hierarchical structure to sequentially execute behavior primitives with variable stiffness control capabilities for contact tasks. Our proposed approach relies on three key components: an action space enabling variable stiffness control, an adaptive stiffness controller for dynamic stiffness adjustments during primitive execution, and affordance coupling for efficient exploration while encouraging compliance. Through comprehensive training and evaluation, our framework learns efficient stiffness control capabilities and demonstrates improvements in learning efficiency, compositionality in primitive selection, and success rates compared to the state-of-the-art. The training environments include block lifting, door opening, object pushing, and surface cleaning. Real world evaluations further confirm the framework's sim2real capability. This work lays the foundation for more adaptive and versatile robotic manipulation systems, with potential applications in more complex contact-based tasks.
Abstract:Adapting trajectories to dynamic situations and user preferences is crucial for robot operation in unstructured environments with non-expert users. Natural language enables users to express these adjustments in an interactive manner. We introduce OVITA, an interpretable, open-vocabulary, language-driven framework designed for adapting robot trajectories in dynamic and novel situations based on human instructions. OVITA leverages multiple pre-trained Large Language Models (LLMs) to integrate user commands into trajectories generated by motion planners or those learned through demonstrations. OVITA employs code as an adaptation policy generated by an LLM, enabling users to adjust individual waypoints, thus providing flexible control. Another LLM, which acts as a code explainer, removes the need for expert users, enabling intuitive interactions. The efficacy and significance of the proposed OVITA framework is demonstrated through extensive simulations and real-world environments with diverse tasks involving spatiotemporal variations on heterogeneous robotic platforms such as a KUKA IIWA robot manipulator, Clearpath Jackal ground robot, and CrazyFlie drone.
Abstract:Adapting robot trajectories based on human instructions as per new situations is essential for achieving more intuitive and scalable human-robot interactions. This work proposes a flexible language-based framework to adapt generic robotic trajectories produced by off-the-shelf motion planners like RRT, A-star, etc, or learned from human demonstrations. We utilize pre-trained LLMs to adapt trajectory waypoints by generating code as a policy for dense robot manipulation, enabling more complex and flexible instructions than current methods. This approach allows us to incorporate a broader range of commands, including numerical inputs. Compared to state-of-the-art feature-based sequence-to-sequence models which require training, our method does not require task-specific training and offers greater interpretability and more effective feedback mechanisms. We validate our approach through simulation experiments on the robotic manipulator, aerial vehicle, and ground robot in the Pybullet and Gazebo simulation environments, demonstrating that LLMs can successfully adapt trajectories to complex human instructions.
Abstract:Ensuring safe and generalizable control remains a fundamental challenge in robotics, particularly when deploying imitation learning in dynamic environments. Traditional behavior cloning (BC) struggles to generalize beyond its training distribution, as it lacks an understanding of the safety critical reasoning behind expert demonstrations. To address this limitation, we propose GenOSIL, a novel imitation learning framework that explicitly incorporates environment parameters into policy learning via a structured latent representation. Unlike conventional methods that treat the environment as a black box, GenOSIL employs a variational autoencoder (VAE) to encode measurable safety parameters such as obstacle position, velocity, and geometry into a latent space that captures intrinsic correlations between expert behavior and environmental constraints. This enables the policy to infer the rationale behind expert trajectories rather than merely replicating them. We validate our approach on two robotic platforms an autonomous ground vehicle and a Franka Emika Panda manipulator demonstrating superior safety and goal reaching performance compared to baseline methods. The simulation and hardware videos can be viewed on the project webpage: https://mumukshtayal.github.io/GenOSIL/.
Abstract:The rise of the industrial metaverse has brought digital twins (DTs) to the forefront. Blockchain-powered non-fungible tokens (NFTs) offer a decentralized approach to creating and owning these cloneable DTs. However, the potential for unauthorized duplication, or counterfeiting, poses a significant threat to the security of NFT-DTs. Existing NFT clone detection methods often rely on static information like metadata and images, which can be easily manipulated. To address these limitations, we propose a novel deep-learning-based solution as a combination of an autoencoder and RNN-based classifier. This solution enables real-time pattern recognition to detect fake NFT-DTs. Additionally, we introduce the concept of dynamic metadata, providing a more reliable way to verify authenticity through AI-integrated smart contracts. By effectively identifying counterfeit DTs, our system contributes to strengthening the security of NFT-based assets in the metaverse.
Abstract:Robot-assisted ultrasound scanning promises to advance autonomous and accessible medical imaging. However, ensuring patient safety and compliant human-robot interaction (HRI) during probe contact poses a significant challenge. Most existing systems either have high mechanical stiffness or are compliant but lack sufficient force and precision. This paper presents a novel single-degree-of-freedom end-effector for safe and accurate robotic ultrasound imaging, using a quasi-direct drive actuator to achieve both passive mechanical compliance and precise active force regulation, even during motion. The end-effector demonstrates an effective force control bandwidth of 100 Hz and can apply forces ranging from 2.5N to 15N. To validate the end-effector's performance, we developed a novel ex vivo actuating platform, enabling compliance testing of the end-effector on simulated abdominal breathing and sudden patient movements. Experiments demonstrate that the end-effector can maintain consistent probe contact during simulated respiratory motion at 2.5N, 5N, 10N, and 15N, with an average force tracking RMS error of 0.83N compared to 4.70N on a UR3e robot arm using conventional force control. This system represents the first compliant ultrasound end-effector tested on a tissue platform simulating dynamic movement. The proposed solution provides a novel approach for designing and evaluating compliant robotic ultrasound systems, advancing the path for more compliant and patient-friendly robotic ultrasound systems in clinical settings.
Abstract:Laser-based surgical ablation relies heavily on surgeon involvement, restricting precision to the limits of human error. The interaction between laser and tissue is governed by various laser parameters that control the laser irradiance on the tissue, including the laser power, distance, spot size, orientation, and exposure time. This complex interaction lends itself to robotic automation, allowing the surgeon to focus on high-level tasks, such as choosing the region and method of ablation, while the lower-level ablation plan can be handled autonomously. This paper describes a sampling-based model predictive control (MPC) scheme to plan ablation sequences for arbitrary tissue volumes. Using a steady-state point ablation model to simulate a single laser-tissue interaction, a random search technique explores the reachable state space while preserving sensitive tissue regions. The sampled MPC strategy provides an ablation sequence that accounts for parameter uncertainty without violating constraints, such as avoiding critical nerve bundles or blood vessels.
Abstract:This paper introduces a novel fingerprint classification technique based on a multi-layered fuzzy logic classifier. We target the cause of missed detection by identifying the fingerprints at an early stage among dry, standard, and wet. Scanned images are classified based on clarity correlated with the proposed feature points. We also propose a novel adaptive algorithm based on eigenvector space for generating new samples to overcome the multiclass imbalance. Proposed methods improve the performance of ensemble learners. It was also found that the new approach performs better than the neural-network based classification methods. Early-stage improvements give a suitable dataset for fingerprint detection models. Leveraging the novel classifier, the best set of `standard' labelled fingerprints is used to generate a unique hybrid fingerprint orientation map (HFOM). We introduce a novel min-rotate max-flow optimization method inspired by the min-cut max-flow algorithm. The unique properties of HFOM generation introduce a new use case for biometric data protection by using HFOM as a virtual proxy of fingerprints.
Abstract:The Monotonocity Principle states a monotonic relationship between a possibly non-linear material property and a proper corresponding boundary operator. The Monotonicity Principle (MP) has attracted great interest in the field of inverse problems, because of its fundamental role in developing real time imaging methods. Recently, with quite general assumptions, a MP in the presence of non linear materials has been established for elliptic PDE, such as those governing Electrical Resistance Tomography. Together with recently introduced imaging methods and algorithms based on MP, arises a fundamental question related to the Converse (of the MP). Indeed, the Converse of the MP is fundamental to define the theoretical limits of applicability of imaging methods and algorithms. Specifically, the Converse of the MP guarantees that the outer boundary of a nonlinear anomaly can be reconstructed by means of MP based imaging methods. In this paper, the Converse of the Monotonicity Principle for nonlinear anomaly embedded in a linear material is proved. The results is provided in a quite general setting for Electrical Resistance Tomography. Moreover, the nonlinear electrical conductivity of the anomaly, as function of the electric field, can be either bounded or not bounded from infinity and/or zero.
Abstract:Learning from Interactive Demonstrations has revolutionized the way non-expert humans teach robots. It is enough to kinesthetically move the robot around to teach pick-and-place, dressing, or cleaning policies. However, the main challenge is correctly generalizing to novel situations, e.g., different surfaces to clean or different arm postures to dress. This article proposes a novel task parameterization and generalization to transport the original robot policy, i.e., position, velocity, orientation, and stiffness. Unlike the state of the art, only a set of points are tracked during the demonstration and the execution, e.g., a point cloud of the surface to clean. We then propose to fit a non-linear transformation that would deform the space and then the original policy using the paired source and target point sets. The use of function approximators like Gaussian Processes allows us to generalize, or transport, the policy from every space location while estimating the uncertainty of the resulting policy due to the limited points in the task parameterization point set and the reduced number of demonstrations. We compare the algorithm's performance with state-of-the-art task parameterization alternatives and analyze the effect of different function approximators. We also validated the algorithm on robot manipulation tasks, i.e., different posture arm dressing, different location product reshelving, and different shape surface cleaning.