Abstract:Application modernization in legacy languages such as COBOL, PL/I, and REXX faces an acute shortage of resources, both in expert availability and in high-quality human evaluation data. While Large Language Models as a Judge (LaaJ) offer a scalable alternative to expert review, their reliability must be validated before being trusted in high-stakes workflows. Without principled validation, organizations risk a circular evaluation loop, where unverified LaaJs are used to assess model outputs, potentially reinforcing unreliable judgments and compromising downstream deployment decisions. Although various automated approaches to validating LaaJs have been proposed, alignment with human judgment remains a widely used and conceptually grounded validation strategy. In many real-world domains, the availability of human-labeled evaluation data is severely limited, making it difficult to assess how well a LaaJ aligns with human judgment. We introduce SparseAlign, a formal framework for assessing LaaJ alignment with sparse human-labeled data. SparseAlign combines a novel pairwise-confidence concept with a score-sensitive alignment metric that jointly capture ranking consistency and score proximity, enabling reliable evaluator selection even when traditional statistical methods are ineffective due to limited annotated examples. SparseAlign was applied internally to select LaaJs for COBOL code explanation. The top-aligned evaluators were integrated into assessment workflows, guiding model release decisions. We present a case study of four LaaJs to demonstrate SparseAlign's utility in real-world evaluation scenarios.
Abstract:We introduce a novel LLM based solution design approach that utilizes combinatorial optimization and sampling. Specifically, a set of factors that influence the quality of the solution are identified. They typically include factors that represent prompt types, LLM inputs alternatives, and parameters governing the generation and design alternatives. Identifying the factors that govern the LLM solution quality enables the infusion of subject matter expert knowledge. Next, a set of interactions between the factors are defined and combinatorial optimization is used to create a small subset $P$ that ensures all desired interactions occur in $P$. Each element $p \in P$ is then developed into an appropriate benchmark. Applying the alternative solutions on each combination, $p \in P$ and evaluating the results facilitate the design of a high quality LLM solution pipeline. The approach is especially applicable when the design and evaluation of each benchmark in $P$ is time-consuming and involves manual steps and human evaluation. Given its efficiency the approach can also be used as a baseline to compare and validate an autoML approach that searches over the factors governing the solution.