Abstract:Social organisms which construct nests consisting of tunnels and chambers necessarily navigate confined and crowded conditions. Unlike low-density collectives like bird flocks and insect swarms, in which hydrodynamic and statistical phenomena dominate, the physics of glasses and supercooled fluids is important to understand clogging behaviors in high-density collectives. Our previous work revealed that fire ants flowing in confined tunnels utilize diverse behaviors like unequal workload distributions, spontaneous direction reversals, and limited interaction times to mitigate clogging and jamming and thus maintain functional flow; implementation of similar rules in a small robophysical swarm led to high performance through spontaneous dissolution of clogs and clusters. However, how the insects learn such behaviors, and how we can develop "task capable" active matter in such regimes, remains a challenge in part because interaction dynamics are dominated by local, time-consuming collisions and no single agent can guide the entire collective. Here, we hypothesized that effective flow and clog mitigation could emerge purely through local learning. We tasked small groups of robots with pellet excavation in a narrow tunnel, allowing them to modify reversal probabilities over time. Initially, robots had equal probabilities and clogs were common. Reversals improved flow. When reversal probabilities adapted via collisions and noisy tunnel length estimates, workload inequality and performance improved. Our robophysical study of an excavating swarm shows that, despite the seeming complexity and difficulty of the task, simple learning rules can mitigate or leverage unavoidable features in task-capable dense active matter, leading to hypotheses for dense biological and robotic swarms.
Abstract:We report in experiment and simulation the spontaneous formation of dynamically bound pairs of shape changing robots undergoing locally repulsive collisions. These physical `gliders' robustly emerge from an ensemble of individually undulating three-link two-motor robots and can remain bound for hundreds of undulations and travel for multiple robot dimensions. Gliders occur in two distinct binding symmetries and form over a wide range of angular oscillation extent. This parameter sets the maximal concavity which influences formation probability and translation characteristics. Analysis of dynamics in simulation reveals the mechanism of effective dynamical attraction -- a result of the emergent interplay of appropriately oriented and timed repulsive interactions. Tactile sensing stabilizes the short-lived conformation via concavity modulation.
Abstract:Emergent behavior of particles on a lattice has been analyzed extensively in mathematics with possible analogies to physical phenomena such as clustering in colloidal systems. While there exists a rich pool of interesting results, most are yet to be explored physically due to the lack of experimental validation. Here we show how the individual moves of robotic agents are tightly mapped to a discrete algorithm and the emergent behaviors such as clustering are as predicted by the analysis of this algorithm. Taking advantage of the algorithmic perspective, we further designed robotic controls to manipulate the clustering behavior and show the potential for useful applications such as the transport of obstacles.