Abstract:Social organisms which construct nests consisting of tunnels and chambers necessarily navigate confined and crowded conditions. Unlike low-density collectives like bird flocks and insect swarms, in which hydrodynamic and statistical phenomena dominate, the physics of glasses and supercooled fluids is important to understand clogging behaviors in high-density collectives. Our previous work revealed that fire ants flowing in confined tunnels utilize diverse behaviors like unequal workload distributions, spontaneous direction reversals, and limited interaction times to mitigate clogging and jamming and thus maintain functional flow; implementation of similar rules in a small robophysical swarm led to high performance through spontaneous dissolution of clogs and clusters. However, how the insects learn such behaviors, and how we can develop "task capable" active matter in such regimes, remains a challenge in part because interaction dynamics are dominated by local, time-consuming collisions and no single agent can guide the entire collective. Here, we hypothesized that effective flow and clog mitigation could emerge purely through local learning. We tasked small groups of robots with pellet excavation in a narrow tunnel, allowing them to modify reversal probabilities over time. Initially, robots had equal probabilities and clogs were common. Reversals improved flow. When reversal probabilities adapted via collisions and noisy tunnel length estimates, workload inequality and performance improved. Our robophysical study of an excavating swarm shows that, despite the seeming complexity and difficulty of the task, simple learning rules can mitigate or leverage unavoidable features in task-capable dense active matter, leading to hypotheses for dense biological and robotic swarms.
Abstract:As robots are increasingly deployed to collaborate on tasks within shared workspaces and resources, the failure of an individual robot can critically affect the group's performance. This issue is particularly challenging when robots lack global information or direct communication, relying instead on social interaction for coordination and to complete their tasks. In this study, we propose a novel fault-tolerance technique leveraging physical contact interactions in multi-robot systems, specifically under conditions of limited sensing and spatial confinement. We introduce the "Active Contact Response" (ACR) method, where each robot modulates its behavior based on the likelihood of encountering an inoperative (faulty) robot. Active robots are capable of collectively repositioning stationary and faulty peers to reduce obstructions and maintain optimal group functionality. We implement our algorithm in a team of autonomous robots, equipped with contact-sensing and collision-tolerance capabilities, tasked with collectively excavating cohesive model pellets. Experimental results indicate that the ACR method significantly improves the system's recovery time from robot failures, enabling continued collective excavation with minimal performance degradation. Thus, this work demonstrates the potential of leveraging local, social, and physical interactions to enhance fault tolerance and coordination in multi-robot systems operating in constrained and extreme environments.