Abstract:As robots are increasingly deployed to collaborate on tasks within shared workspaces and resources, the failure of an individual robot can critically affect the group's performance. This issue is particularly challenging when robots lack global information or direct communication, relying instead on social interaction for coordination and to complete their tasks. In this study, we propose a novel fault-tolerance technique leveraging physical contact interactions in multi-robot systems, specifically under conditions of limited sensing and spatial confinement. We introduce the "Active Contact Response" (ACR) method, where each robot modulates its behavior based on the likelihood of encountering an inoperative (faulty) robot. Active robots are capable of collectively repositioning stationary and faulty peers to reduce obstructions and maintain optimal group functionality. We implement our algorithm in a team of autonomous robots, equipped with contact-sensing and collision-tolerance capabilities, tasked with collectively excavating cohesive model pellets. Experimental results indicate that the ACR method significantly improves the system's recovery time from robot failures, enabling continued collective excavation with minimal performance degradation. Thus, this work demonstrates the potential of leveraging local, social, and physical interactions to enhance fault tolerance and coordination in multi-robot systems operating in constrained and extreme environments.
Abstract:We report in experiment and simulation the spontaneous formation of dynamically bound pairs of shape changing robots undergoing locally repulsive collisions. These physical `gliders' robustly emerge from an ensemble of individually undulating three-link two-motor robots and can remain bound for hundreds of undulations and travel for multiple robot dimensions. Gliders occur in two distinct binding symmetries and form over a wide range of angular oscillation extent. This parameter sets the maximal concavity which influences formation probability and translation characteristics. Analysis of dynamics in simulation reveals the mechanism of effective dynamical attraction -- a result of the emergent interplay of appropriately oriented and timed repulsive interactions. Tactile sensing stabilizes the short-lived conformation via concavity modulation.
Abstract:Achieving robust legged locomotion on complex terrains poses challenges due to the high uncertainty in robot-environment interactions. Recent advances in bipedal and quadrupedal robots demonstrate good mobility on rugged terrains but rely heavily on sensors for stability due to low static stability from a high center of mass and a narrow base of support. We hypothesize that a multi-legged robotic system can leverage morphological redundancy from additional legs to minimize sensing requirements when traversing challenging terrains. Studies suggest that a multi-legged system with sufficient legs can reliably navigate noisy landscapes without sensing and control, albeit at a low speed of up to 0.1 body lengths per cycle (BLC). However, the control framework to enhance speed on challenging terrains remains underexplored due to the complex environmental interactions, making it difficult to identify the key parameters to control in these high-degree-of-freedom systems. Here, we present a bio-inspired vertical body undulation wave as a novel approach to mitigate environmental disturbances affecting robot speed, supported by experiments and probabilistic models. Finally, we introduce a control framework which monitors foot-ground contact patterns on rugose landscapes using binary foot-ground contact sensors to estimate terrain rugosity. The controller adjusts the vertical body wave based on the deviation of the limb's averaged actual-to-ideal foot-ground contact ratio, achieving a significant enhancement of up to 0.235 BLC on rugose laboratory terrain. We observed a $\sim$ 50\% increase in speed and a $\sim$ 40\% reduction in speed variance compared to the open-loop controller. Additionally, the controller operates in complex terrains outside the lab, including pine straw, robot-sized rocks, mud, and leaves.