Abstract:This paper presents a method for the joint detection and tracking of weak targets in automotive radars using the multi-frame track-before-detect (MF-TBD) procedure. Generally, target tracking in automotive radars is challenging due to radar field of view (FOV) misalignment, nonlinear coordinate conversion, and self-positioning errors of the ego-vehicle, which are caused by platform motion. These issues significantly hinder the implementation of MF-TBD in automotive radars. To address these challenges, a new MF-TBD detection architecture is first proposed. It can adaptively adjust the detection threshold value based on the existence of moving targets within the radar FOV. Since the implementation of MF-TBD necessitates the inclusion of position, velocity, and yaw angle information of the ego-vehicle, each with varying degrees of measurement error, we further propose a multi-frame energy integration strategy for moving-platform radar and accurately derive the target energy integration path functions. The self-positioning errors of the ego-vehicle, which are usually not considered in some previous target tracking approaches, are well addressed. Numerical simulations and experimental results with real radar data demonstrate large detection and tracking gains over standard automotive radar processing in weak target environments.
Abstract:Learning with noisy labels (LNL) has been extensively studied, with existing approaches typically following a framework that alternates between clean sample selection and semi-supervised learning (SSL). However, this approach has a limitation: the clean set selected by the Deep Neural Network (DNN) classifier, trained through self-training, inevitably contains noisy samples. This mixture of clean and noisy samples leads to misguidance in DNN training during SSL, resulting in impaired generalization performance due to confirmation bias caused by error accumulation in sample selection. To address this issue, we propose a method called Collaborative Sample Selection (CSS), which leverages the large-scale pre-trained model CLIP. CSS aims to remove the mixed noisy samples from the identified clean set. We achieve this by training a 2-Dimensional Gaussian Mixture Model (2D-GMM) that combines the probabilities from CLIP with the predictions from the DNN classifier. To further enhance the adaptation of CLIP to LNL, we introduce a co-training mechanism with a contrastive loss in semi-supervised learning. This allows us to jointly train the prompt of CLIP and the DNN classifier, resulting in improved feature representation, boosted classification performance of DNNs, and reciprocal benefits to our Collaborative Sample Selection. By incorporating auxiliary information from CLIP and utilizing prompt fine-tuning, we effectively eliminate noisy samples from the clean set and mitigate confirmation bias during training. Experimental results on multiple benchmark datasets demonstrate the effectiveness of our proposed method in comparison with the state-of-the-art approaches.