Abstract:This paper explores image editing under the joint control of text and drag interactions. While recent advances in text-driven and drag-driven editing have achieved remarkable progress, they suffer from complementary limitations: text-driven methods excel in texture manipulation but lack precise spatial control, whereas drag-driven approaches primarily modify shape and structure without fine-grained texture guidance. To address these limitations, we propose a unified diffusion-based framework for joint drag-text image editing, integrating the strengths of both paradigms. Our framework introduces two key innovations: (1) Point-Cloud Deterministic Drag, which enhances latent-space layout control through 3D feature mapping, and (2) Drag-Text Guided Denoising, dynamically balancing the influence of drag and text conditions during denoising. Notably, our model supports flexible editing modes - operating with text-only, drag-only, or combined conditions - while maintaining strong performance in each setting. Extensive quantitative and qualitative experiments demonstrate that our method not only achieves high-fidelity joint editing but also matches or surpasses the performance of specialized text-only or drag-only approaches, establishing a versatile and generalizable solution for controllable image manipulation. Code will be made publicly available to reproduce all results presented in this work.
Abstract:Autism Spectrum Disorder is a condition characterized by a typical brain development leading to impairments in social skills, communication abilities, repetitive behaviors, and sensory processing. There have been many studies combining brain MRI images with machine learning algorithms to achieve objective diagnosis of autism, but the correlation between white matter and autism has not been fully utilized. To address this gap, we develop a computer-aided diagnostic model focusing on white matter regions in brain MRI by employing radiomics and machine learning methods. This study introduced a MultiUNet model for segmenting white matter, leveraging the UNet architecture and utilizing manually segmented MRI images as the training data. Subsequently, we extracted white matter features using the Pyradiomics toolkit and applied different machine learning models such as Support Vector Machine, Random Forest, Logistic Regression, and K-Nearest Neighbors to predict autism. The prediction sets all exceeded 80% accuracy. Additionally, we employed Convolutional Neural Network to analyze segmented white matter images, achieving a prediction accuracy of 86.84%. Notably, Support Vector Machine demonstrated the highest prediction accuracy at 89.47%. These findings not only underscore the efficacy of the models but also establish a link between white matter abnormalities and autism. Our study contributes to a comprehensive evaluation of various diagnostic models for autism and introduces a computer-aided diagnostic algorithm for early and objective autism diagnosis based on MRI white matter regions.