Abstract:Vision-Language-Action (VLA) models have emerged as a unified paradigm for robotic perception and control, enabling emergent generalization and long-horizon task execution. However, their deployment in dynamic, real-world environments is severely hin dered by high inference latency. While smooth robotic interaction requires control frequencies of 20 to 30 Hz, current VLA models typi cally operate at only 3-5 Hz on edge devices due to the memory bound nature of autoregressive decoding. Existing optimizations often require extensive retraining or compromise model accuracy. To bridge this gap, we introduce ActionFlow, a system-level inference framework tailored for resource-constrained edge plat forms. At the core of ActionFlow is a Cross-Request Pipelin ing strategy, a novel scheduler that redefines VLA inference as a macro-pipeline of micro-requests. The strategy intelligently batches memory-bound Decode phases with compute-bound Prefill phases across continuous time steps to maximize hardware utilization. Furthermore, to support this scheduling, we propose a Cross Request State Packed Forward operator and a Unified KV Ring Buffer, which fuse fragmented memory operations into efficient dense computations. Experimental results demonstrate that ActionFlow achieves a 2.55x improvement in FPS on the OpenVLA-7B model without retraining, enabling real-time dy namic manipulation on edge hardware. Our work is available at https://anonymous.4open.science/r/ActionFlow-1D47.




Abstract:As financial services (FS) companies have experienced drastic technology driven changes, the availability of new data streams provides the opportunity for more comprehensive customer understanding. We propose Dynamic Customer Embeddings (DCE), a framework that leverages customers' digital activity and a wide range of financial context to learn dense representations of customers in the FS industry. Our method examines customer actions and pageviews within a mobile or web digital session, the sequencing of the sessions themselves, and snapshots of common financial features across our organization at the time of login. We test our customer embeddings using real world data in three prediction problems: 1) the intent of a customer in their next digital session, 2) the probability of a customer calling the call centers after a session, and 3) the probability of a digital session to be fraudulent. DCE showed performance lift in all three downstream problems.