Abstract:Real-world physical systems are inherently complex, often involving the coupling of multiple physics, making their simulation both highly valuable and challenging. Many mainstream approaches face challenges when dealing with decoupled data. Besides, they also suffer from low efficiency and fidelity in strongly coupled spatio-temporal physical systems. Here we propose GenCP, a novel and elegant generative paradigm for coupled multiphysics simulation. By formulating coupled-physics modeling as a probability modeling problem, our key innovation is to integrate probability density evolution in generative modeling with iterative multiphysics coupling, thereby enabling training on data from decoupled simulation and inferring coupled physics during sampling. We also utilize operator-splitting theory in the space of probability evolution to establish error controllability guarantees for this "conditional-to-joint" sampling scheme. We evaluate our paradigm on a synthetic setting and three challenging multi-physics scenarios to demonstrate both principled insight and superior application performance of GenCP. Code is available at this repo: github.com/AI4Science-WestlakeU/GenCP.
Abstract:While conformal prediction provides robust marginal coverage guarantees, achieving reliable conditional coverage for specific inputs remains challenging. Although exact distribution-free conditional coverage is impossible with finite samples, recent work has focused on improving the conditional coverage of standard conformal procedures. Distinct from approaches that target relaxed notions of conditional coverage, we directly minimize the mean squared error of conditional coverage by refining the quantile regression components that underpin many conformal methods. Leveraging a Taylor expansion, we derive a sharp surrogate objective for quantile regression: a density-weighted pinball loss, where the weights are given by the conditional density of the conformity score evaluated at the true quantile. We propose a three-headed quantile network that estimates these weights via finite differences using auxiliary quantile levels at \(1-α\pm δ\), subsequently fine-tuning the central quantile by optimizing the weighted loss. We provide a theoretical analysis with exact non-asymptotic guarantees characterizing the resulting excess risk. Extensive experiments on diverse high-dimensional real-world datasets demonstrate remarkable improvements in conditional coverage performance.
Abstract:Simulating collisions of deformable objects is a fundamental yet challenging task due to the complexity of modeling solid mechanics and multi-body interactions. Existing data-driven methods often suffer from lack of equivariance to physical symmetries, inadequate handling of collisions, and limited scalability. Here we introduce EqCollide, the first end-to-end equivariant neural fields simulator for deformable objects and their collisions. We propose an equivariant encoder to map object geometry and velocity into latent control points. A subsequent equivariant Graph Neural Network-based Neural Ordinary Differential Equation models the interactions among control points via collision-aware message passing. To reconstruct velocity fields, we query a neural field conditioned on control point features, enabling continuous and resolution-independent motion predictions. Experimental results show that EqCollide achieves accurate, stable, and scalable simulations across diverse object configurations, and our model achieves 24.34% to 35.82% lower rollout MSE even compared with the best-performing baseline model. Furthermore, our model could generalize to more colliding objects and extended temporal horizons, and stay robust to input transformed with group action.




Abstract:This paper studies the performative policy learning problem, where agents adjust their features in response to a released policy to improve their potential outcomes, inducing an endogenous distribution shift. There has been growing interest in training machine learning models in strategic environments, including strategic classification and performative prediction. However, existing approaches often rely on restrictive parametric assumptions: micro-level utility models in strategic classification and macro-level data distribution maps in performative prediction, severely limiting scalability and generalizability. We approach this problem as a complex causal inference task, relaxing parametric assumptions on both micro-level agent behavior and macro-level data distribution. Leveraging bounded rationality, we uncover a practical low-dimensional structure in distribution shifts and construct an effective mediator in the causal path from the deployed model to the shifted data. We then propose a gradient-based policy optimization algorithm with a differentiable classifier as a substitute for the high-dimensional distribution map. Our algorithm efficiently utilizes batch feedback and limited manipulation patterns. Our approach achieves high sample efficiency compared to methods reliant on bandit feedback or zero-order optimization. We also provide theoretical guarantees for algorithmic convergence. Extensive and challenging experiments on high-dimensional settings demonstrate our method's practical efficacy.