Abstract:AI-based judicial assistance and case prediction have been extensively studied in criminal and civil domains, but remain largely unexplored in consumer law, especially in India. In this paper, we present Nyay-Darpan, a novel two-in-one framework that (i) summarizes consumer case files and (ii) retrieves similar case judgements to aid decision-making in consumer dispute resolution. Our methodology not only addresses the gap in consumer law AI tools but also introduces an innovative approach to evaluate the quality of the summary. The term 'Nyay-Darpan' translates into 'Mirror of Justice', symbolizing the ability of our tool to reflect the core of consumer disputes through precise summarization and intelligent case retrieval. Our system achieves over 75 percent accuracy in similar case prediction and approximately 70 percent accuracy across material summary evaluation metrics, demonstrating its practical effectiveness. We will publicly release the Nyay-Darpan framework and dataset to promote reproducibility and facilitate further research in this underexplored yet impactful domain.
Abstract:Optical Character Recognition (OCR) technology has revolutionized the digitization of printed text, enabling efficient data extraction and analysis across various domains. Just like Machine Translation systems, OCR systems are prone to errors. In this work, we address the challenge of data generation and post-OCR error correction, specifically for low-resource languages. We propose an approach for synthetic data generation for Devanagari languages, RoundTripOCR, that tackles the scarcity of the post-OCR Error Correction datasets for low-resource languages. We release post-OCR text correction datasets for Hindi, Marathi, Bodo, Nepali, Konkani and Sanskrit. We also present a novel approach for OCR error correction by leveraging techniques from machine translation. Our method involves translating erroneous OCR output into a corrected form by treating the OCR errors as mistranslations in a parallel text corpus, employing pre-trained transformer models to learn the mapping from erroneous to correct text pairs, effectively correcting OCR errors.