Abstract:In addressing the challenge of Crystal Structure Prediction (CSP), symmetry-aware deep learning models, particularly diffusion models, have been extensively studied, which treat CSP as a conditional generation task. However, ensuring permutation, rotation, and periodic translation equivariance during diffusion process remains incompletely addressed. In this work, we propose EquiCSP, a novel equivariant diffusion-based generative model. We not only address the overlooked issue of lattice permutation equivariance in existing models, but also develop a unique noising algorithm that rigorously maintains periodic translation equivariance throughout both training and inference processes. Our experiments indicate that EquiCSP significantly surpasses existing models in terms of generating accurate structures and demonstrates faster convergence during the training process.
Abstract:We present MatUQ, a benchmark framework for evaluating graph neural networks (GNNs) on out-of-distribution (OOD) materials property prediction with uncertainty quantification (UQ). MatUQ comprises 1,375 OOD prediction tasks constructed from six materials datasets using five OFM-based and a newly proposed structure-aware splitting strategy, SOAP-LOCO, which captures local atomic environments more effectively. We evaluate 12 representative GNN models under a unified uncertainty-aware training protocol that combines Monte Carlo Dropout and Deep Evidential Regression (DER), and introduce a novel uncertainty metric, D-EviU, which shows the strongest correlation with prediction errors in most tasks. Our experiments yield two key findings. First, the uncertainty-aware training approach significantly improves model prediction accuracy, reducing errors by an average of 70.6\% across challenging OOD scenarios. Second, the benchmark reveals that no single model dominates universally: earlier models such as SchNet and ALIGNN remain competitive, while newer models like CrystalFramer and SODNet demonstrate superior performance on specific material properties. These results provide practical insights for selecting reliable models under distribution shifts in materials discovery.