Abstract:Constitutional AI has focused on single-model alignment using fixed principles. However, multi-agent systems create novel alignment challenges through emergent social dynamics. We present Constitutional Evolution, a framework for automatically discovering behavioral norms in multi-agent LLM systems. Using a grid-world simulation with survival pressure, we study the tension between individual and collective welfare, quantified via a Societal Stability Score S in [0,1] that combines productivity, survival, and conflict metrics. Adversarial constitutions lead to societal collapse (S= 0), while vague prosocial principles ("be helpful, harmless, honest") produce inconsistent coordination (S = 0.249). Even constitutions designed by Claude 4.5 Opus with explicit knowledge of the objective achieve only moderate performance (S= 0.332). Using LLM-driven genetic programming with multi-island evolution, we evolve constitutions maximizing social welfare without explicit guidance toward cooperation. The evolved constitution C* achieves S = 0.556 +/- 0.008 (123% higher than human-designed baselines, N = 10), eliminates conflict, and discovers that minimizing communication (0.9% vs 62.2% social actions) outperforms verbose coordination. Our interpretable rules demonstrate that cooperative norms can be discovered rather than prescribed.
Abstract:Controlling memorization in diffusion models is critical for applications that require generated data to closely match the training distribution. Existing approaches mainly focus on data centric or model centric modifications, treating the diffusion model as an isolated predictor. In this paper, we study memorization in diffusion models from a denoising centric perspective. We show that uniform timestep sampling leads to unequal learning contributions across denoising steps due to differences in signal to noise ratio, which biases training toward memorization. To address this, we propose a timestep sampling strategy that explicitly controls where learning occurs along the denoising trajectory. By adjusting the width of the confidence interval, our method provides direct control over the memorization generalization trade off. Experiments on image and 1D signal generation tasks demonstrate that shifting learning emphasis toward later denoising steps consistently reduces memorization and improves distributional alignment with training data, validating the generality and effectiveness of our approach.




Abstract:Underwater vision is crucial for autonomous underwater vehicles (AUVs), and enhancing degraded underwater images in real-time on a resource-constrained AUV is a key challenge due to factors like light absorption and scattering, or the sufficient model computational complexity to resolve such factors. Traditional image enhancement techniques lack adaptability to varying underwater conditions, while learning-based methods, particularly those using convolutional neural networks (CNNs) and generative adversarial networks (GANs), offer more robust solutions but face limitations such as inadequate enhancement, unstable training, or mode collapse. Denoising diffusion probabilistic models (DDPMs) have emerged as a state-of-the-art approach in image-to-image tasks but require intensive computational complexity to achieve the desired underwater image enhancement (UIE) using the recent UW-DDPM solution. To address these challenges, this paper introduces UW-DiffPhys, a novel physical-based and diffusion-based UIE approach. UW-DiffPhys combines light-computation physical-based UIE network components with a denoising U-Net to replace the computationally intensive distribution transformation U-Net in the existing UW-DDPM framework, reducing complexity while maintaining performance. Additionally, the Denoising Diffusion Implicit Model (DDIM) is employed to accelerate the inference process through non-Markovian sampling. Experimental results demonstrate that UW-DiffPhys achieved a substantial reduction in computational complexity and inference time compared to UW-DDPM, with competitive performance in key metrics such as PSNR, SSIM, UCIQE, and an improvement in the overall underwater image quality UIQM metric. The implementation code can be found at the following repository: https://github.com/bachzz/UW-DiffPhys