Abstract:Three-dimensional (3D) tooth instance segmentation remains challenging due to crowded arches, ambiguous tooth-gingiva boundaries, missing teeth, and rare yet clinically important third molars. Native 3D methods relying on geometric cues often suffer from boundary leakage, center drift, and inconsistent tooth identities, especially for minority classes and complex anatomies. Meanwhile, 2D foundation models such as the Segment Anything Model (SAM) provide strong boundary-aware semantics, but directly applying them in 3D is impractical in clinical workflows. To address these issues, we propose SOFTooth, a semantics-enhanced, order-aware 2D-3D fusion framework that leverages frozen 2D semantics without explicit 2D mask supervision. First, a point-wise residual gating module injects occlusal-view SAM embeddings into 3D point features to refine tooth-gingiva and inter-tooth boundaries. Second, a center-guided mask refinement regularizes consistency between instance masks and geometric centroids, reducing center drift. Furthermore, an order-aware Hungarian matching strategy integrates anatomical tooth order and center distance into similarity-based assignment, ensuring coherent labeling even under missing or crowded dentitions. On 3DTeethSeg'22, SOFTooth achieves state-of-the-art overall accuracy and mean IoU, with clear gains on cases involving third molars, demonstrating that rich 2D semantics can be effectively transferred to 3D tooth instance segmentation without 2D fine-tuning.
Abstract:Recently, zero-shot anomaly detection (ZSAD) has emerged as a pivotal paradigm for identifying defects in unseen categories without requiring target samples in training phase. However, existing ZSAD methods struggle with the boundary of small and complex defects due to insufficient representations. Most of them use the single manually designed prompts, failing to work for diverse objects and anomalies. In this paper, we propose MFP-CLIP, a novel prompt-based CLIP framework which explores the efficacy of multi-form prompts for zero-shot industrial anomaly detection. We employ an image to text prompting(I2TP) mechanism to better represent the object in the image. MFP-CLIP enhances perception to multi-scale and complex anomalies by self prompting(SP) and a multi-patch feature aggregation(MPFA) module. To precisely localize defects, we introduce the mask prompting(MP) module to guide model to focus on potential anomaly regions. Extensive experiments are conducted on two wildly used industrial anomaly detection benchmarks, MVTecAD and VisA, demonstrating MFP-CLIP's superiority in ZSAD.




Abstract:The lesion segmentation on endoscopic images is challenging due to its complex and ambiguous features. Fully-supervised deep learning segmentation methods can receive good performance based on entirely pixel-level labeled dataset but greatly increase experts' labeling burden. Semi-supervised and weakly supervised methods can ease labeling burden, but heavily strengthen the learning difficulty. To alleviate this difficulty, weakly semi-supervised segmentation adopts a new annotation protocol of adding a large number of point annotation samples into a few pixel-level annotation samples. However, existing methods only mine points' limited information while ignoring reliable prior surrounding the point annotations. In this paper, we propose a weakly semi-supervised method called Point-Neighborhood Learning (PNL) framework. To mine the prior of the pixels surrounding the annotated point, we transform a single-point annotation into a circular area named a point-neighborhood. We propose point-neighborhood supervision loss and pseudo-label scoring mechanism to enhance training supervision. Point-neighborhoods are also used to augment the data diversity. Our method greatly improves performance without changing the structure of segmentation network. Comprehensive experiments show the superiority of our method over the other existing methods, demonstrating its effectiveness in point-annotated medical images. The project code will be available on: https://github.com/ParryJay/PNL.