Abstract:Federated Learning (FL) enables decentralized model training across multiple clients without exposing local data, but its distributed feature makes it vulnerable to backdoor attacks. Despite early FL backdoor attacks modifying entire models, recent studies have explored the concept of backdoor-critical (BC) layers, which poison the chosen influential layers to maintain stealthiness while achieving high effectiveness. However, existing BC layers approaches rely on rule-based selection without consideration of the interrelations between layers, making them ineffective and prone to detection by advanced defenses. In this paper, we propose POLAR (POlicy-based LAyerwise Reinforcement learning), the first pipeline to creatively adopt RL to solve the BC layer selection problem in layer-wise backdoor attack. Different from other commonly used RL paradigm, POLAR is lightweight with Bernoulli sampling. POLAR dynamically learns an attack strategy, optimizing layer selection using policy gradient updates based on backdoor success rate (BSR) improvements. To ensure stealthiness, we introduce a regularization constraint that limits the number of modified layers by penalizing large attack footprints. Extensive experiments demonstrate that POLAR outperforms the latest attack methods by up to 40% against six state-of-the-art (SOTA) defenses.




Abstract:Federated Learning (FL) is becoming a popular paradigm for leveraging distributed data and preserving data privacy. However, due to the distributed characteristic, FL systems are vulnerable to Byzantine attacks that compromised clients attack the global model by uploading malicious model updates. Most existing Byzantine-robust FL systems statistically analyze the weights of whole individual model updates uploaded by clients to defend against Byzantine attacks. With the development of layer-level and parameter-level fine-grained attacks, the attacks' stealthiness and effectiveness have been significantly improved. Due to unawareness or overreaction, the existing model-level defense methods degrade the training efficiency and model performance. To address this problem, we propose SkyMask, a new attack-agnostic robust FL system that leverages fine-grained learnable masks to identify malicious model updates at the parameter-level. Specifically, the FL server applies parameter-level masks to model updates uploaded by clients and trains the masks over a small clean dataset (i.e., root dataset) to learn the subtle difference between benign and malicious model updates in a high-dimension space. Our extensive experiments involve different models on three public datasets under state-of-the-art (SOTA) attacks, where the results show that SkyMask achieves up to 10% higher testing accuracy compared with SOTA defense strategies and successfully defends against attacks with malicious clients of a high fraction up to 80%. In the meantime, the experimental results demonstrate the scalability of our approach and the weak dependence on the data distribution of the root dataset.