Abstract:This paper reviews the AIM 2025 Efficient Real-World Deblurring using Single Images Challenge, which aims to advance in efficient real-blur restoration. The challenge is based on a new test set based on the well known RSBlur dataset. Pairs of blur and degraded images in this dataset are captured using a double-camera system. Participant were tasked with developing solutions to effectively deblur these type of images while fulfilling strict efficiency constraints: fewer than 5 million model parameters and a computational budget under 200 GMACs. A total of 71 participants registered, with 4 teams finally submitting valid solutions. The top-performing approach achieved a PSNR of 31.1298 dB, showcasing the potential of efficient methods in this domain. This paper provides a comprehensive overview of the challenge, compares the proposed solutions, and serves as a valuable reference for researchers in efficient real-world image deblurring.
Abstract:Image deblurring, removing blurring artifacts from images, is a fundamental task in computational photography and low-level computer vision. Existing approaches focus on specialized solutions tailored to particular blur types, thus, these solutions lack generalization. This limitation in current methods implies requiring multiple models to cover several blur types, which is not practical in many real scenarios. In this paper, we introduce the first all-in-one deblurring method capable of efficiently restoring images affected by diverse blur degradations, including global motion, local motion, blur in low-light conditions, and defocus blur. We propose a mixture-of-experts (MoE) decoding module, which dynamically routes image features based on the recognized blur degradation, enabling precise and efficient restoration in an end-to-end manner. Our unified approach not only achieves performance comparable to dedicated task-specific models, but also demonstrates remarkable robustness and generalization capabilities on unseen blur degradation scenarios.