Abstract:We release NSD-Imagery, a benchmark dataset of human fMRI activity paired with mental images, to complement the existing Natural Scenes Dataset (NSD), a large-scale dataset of fMRI activity paired with seen images that enabled unprecedented improvements in fMRI-to-image reconstruction efforts. Recent models trained on NSD have been evaluated only on seen image reconstruction. Using NSD-Imagery, it is possible to assess how well these models perform on mental image reconstruction. This is a challenging generalization requirement because mental images are encoded in human brain activity with relatively lower signal-to-noise and spatial resolution; however, generalization from seen to mental imagery is critical for real-world applications in medical domains and brain-computer interfaces, where the desired information is always internally generated. We provide benchmarks for a suite of recent NSD-trained open-source visual decoding models (MindEye1, MindEye2, Brain Diffuser, iCNN, Takagi et al.) on NSD-Imagery, and show that the performance of decoding methods on mental images is largely decoupled from performance on vision reconstruction. We further demonstrate that architectural choices significantly impact cross-decoding performance: models employing simple linear decoding architectures and multimodal feature decoding generalize better to mental imagery, while complex architectures tend to overfit visual training data. Our findings indicate that mental imagery datasets are critical for the development of practical applications, and establish NSD-Imagery as a useful resource for better aligning visual decoding methods with this goal.
Abstract:Reconstructions of visual perception from brain activity have improved tremendously, but the practical utility of such methods has been limited. This is because such models are trained independently per subject where each subject requires dozens of hours of expensive fMRI training data to attain high-quality results. The present work showcases high-quality reconstructions using only 1 hour of fMRI training data. We pretrain our model across 7 subjects and then fine-tune on minimal data from a new subject. Our novel functional alignment procedure linearly maps all brain data to a shared-subject latent space, followed by a shared non-linear mapping to CLIP image space. We then map from CLIP space to pixel space by fine-tuning Stable Diffusion XL to accept CLIP latents as inputs instead of text. This approach improves out-of-subject generalization with limited training data and also attains state-of-the-art image retrieval and reconstruction metrics compared to single-subject approaches. MindEye2 demonstrates how accurate reconstructions of perception are possible from a single visit to the MRI facility. All code is available on GitHub.
Abstract:We present MindEye, a novel fMRI-to-image approach to retrieve and reconstruct viewed images from brain activity. Our model comprises two parallel submodules that are specialized for retrieval (using contrastive learning) and reconstruction (using a diffusion prior). MindEye can map fMRI brain activity to any high dimensional multimodal latent space, like CLIP image space, enabling image reconstruction using generative models that accept embeddings from this latent space. We comprehensively compare our approach with other existing methods, using both qualitative side-by-side comparisons and quantitative evaluations, and show that MindEye achieves state-of-the-art performance in both reconstruction and retrieval tasks. In particular, MindEye can retrieve the exact original image even among highly similar candidates indicating that its brain embeddings retain fine-grained image-specific information. This allows us to accurately retrieve images even from large-scale databases like LAION-5B. We demonstrate through ablations that MindEye's performance improvements over previous methods result from specialized submodules for retrieval and reconstruction, improved training techniques, and training models with orders of magnitude more parameters. Furthermore, we show that MindEye can better preserve low-level image features in the reconstructions by using img2img, with outputs from a separate autoencoder. All code is available on GitHub.