Abstract:The Eye Movements on Machine-Generated Texts Corpus (EMTeC) is a naturalistic eye-movements-while-reading corpus of 107 native English speakers reading machine-generated texts. The texts are generated by three large language models using five different decoding strategies, and they fall into six different text type categories. EMTeC entails the eye movement data at all stages of pre-processing, i.e., the raw coordinate data sampled at 2000 Hz, the fixation sequences, and the reading measures. It further provides both the original and a corrected version of the fixation sequences, accounting for vertical calibration drift. Moreover, the corpus includes the language models' internals that underlie the generation of the stimulus texts: the transition scores, the attention scores, and the hidden states. The stimuli are annotated for a range of linguistic features both at text and at word level. We anticipate EMTeC to be utilized for a variety of use cases such as, but not restricted to, the investigation of reading behavior on machine-generated text and the impact of different decoding strategies; reading behavior on different text types; the development of new pre-processing, data filtering, and drift correction algorithms; the cognitive interpretability and enhancement of language models; and the assessment of the predictive power of surprisal and entropy for human reading times. The data at all stages of pre-processing, the model internals, and the code to reproduce the stimulus generation, data pre-processing and analyses can be accessed via https://github.com/DiLi-Lab/EMTeC/.
Abstract:To date, most investigations on surprisal and entropy effects in reading have been conducted on the group level, disregarding individual differences. In this work, we revisit the predictive power of surprisal and entropy measures estimated from a range of language models (LMs) on data of human reading times as a measure of processing effort by incorporating information of language users' cognitive capacities. To do so, we assess the predictive power of surprisal and entropy estimated from generative LMs on reading data obtained from individuals who also completed a wide range of psychometric tests. Specifically, we investigate if modulating surprisal and entropy relative to cognitive scores increases prediction accuracy of reading times, and we examine whether LMs exhibit systematic biases in the prediction of reading times for cognitively high- or low-performing groups, revealing what type of psycholinguistic subject a given LM emulates. Our study finds that in most cases, incorporating cognitive capacities increases predictive power of surprisal and entropy on reading times, and that generally, high performance in the psychometric tests is associated with lower sensitivity to predictability effects. Finally, our results suggest that the analyzed LMs emulate readers with lower verbal intelligence, suggesting that for a given target group (i.e., individuals with high verbal intelligence), these LMs provide less accurate predictability estimates.
Abstract:Recent advancements in large language models (LLMs) have showcased their exceptional abilities across various tasks, such as code generation, problem-solving and reasoning. Existing benchmarks evaluate tasks in isolation, yet the extent to which LLMs can understand prose-style tasks, identify the underlying problems, and then generate appropriate code solutions is still unexplored. Addressing this gap, we introduce PECC, a novel benchmark derived from Advent Of Code (AoC) challenges and Project Euler, including 2396 problems. Unlike conventional benchmarks, PECC requires LLMs to interpret narrative-embedded problems, extract requirements, and generate executable code. A key feature of our dataset is the complexity added by natural language prompting in chat-based evaluations, mirroring real-world instruction ambiguities. Results show varying model performance between narrative and neutral problems, with specific challenges in the Euler math-based subset with GPT-3.5-Turbo passing 50% of the AoC challenges and only 8% on the Euler problems. By probing the limits of LLMs' capabilities, our benchmark provides a framework to monitor and assess the subsequent progress of LLMs as a universal problem solver.
Abstract:The Potsdam Textbook Corpus (PoTeC) is a naturalistic eye-tracking-while-reading corpus containing data from 75 participants reading 12 scientific texts. PoTeC is the first naturalistic eye-tracking-while-reading corpus that contains eye-movements from domain-experts as well as novices in a within-participant manipulation: It is based on a 2x2x2 fully-crossed factorial design which includes the participants' level of study and the participants' discipline of study as between-subject factors and the text domain as a within-subject factor. The participants' reading comprehension was assessed by a series of text comprehension questions and their domain knowledge was tested by text-independent background questions for each of the texts. The materials are annotated for a variety of linguistic features at different levels. We envision PoTeC to be used for a wide range of studies including but not limited to analyses of expert and non-expert reading strategies. The corpus and all the accompanying data at all stages of the preprocessing pipeline and all code used to preprocess the data are made available via GitHub: https://github.com/DiLi-Lab/PoTeC.
Abstract:Text simplification refers to the process of increasing the comprehensibility of texts. Automatic text simplification models are most commonly evaluated by experts or crowdworkers instead of the primary target groups of simplified texts, such as persons with intellectual disabilities. We conducted an evaluation study of text comprehensibility including participants with and without intellectual disabilities reading unsimplified, automatically and manually simplified German texts on a tablet computer. We explored four different approaches to measuring comprehensibility: multiple-choice comprehension questions, perceived difficulty ratings, response time, and reading speed. The results revealed significant variations in these measurements, depending on the reader group and whether the text had undergone automatic or manual simplification. For the target group of persons with intellectual disabilities, comprehension questions emerged as the most reliable measure, while analyzing reading speed provided valuable insights into participants' reading behavior.
Abstract:Eye movements in reading play a crucial role in psycholinguistic research studying the cognitive mechanisms underlying human language processing. More recently, the tight coupling between eye movements and cognition has also been leveraged for language-related machine learning tasks such as the interpretability, enhancement, and pre-training of language models, as well as the inference of reader- and text-specific properties. However, scarcity of eye movement data and its unavailability at application time poses a major challenge for this line of research. Initially, this problem was tackled by resorting to cognitive models for synthesizing eye movement data. However, for the sole purpose of generating human-like scanpaths, purely data-driven machine-learning-based methods have proven to be more suitable. Following recent advances in adapting diffusion processes to discrete data, we propose ScanDL, a novel discrete sequence-to-sequence diffusion model that generates synthetic scanpaths on texts. By leveraging pre-trained word representations and jointly embedding both the stimulus text and the fixation sequence, our model captures multi-modal interactions between the two inputs. We evaluate ScanDL within- and across-dataset and demonstrate that it significantly outperforms state-of-the-art scanpath generation methods. Finally, we provide an extensive psycholinguistic analysis that underlines the model's ability to exhibit human-like reading behavior. Our implementation is made available at https://github.com/DiLi-Lab/ScanDL.
Abstract:Most NLP tasks are modeled as supervised learning and thus require labeled training data to train effective models. However, manually producing such data at sufficient quality and quantity is known to be costly and time-intensive. Current research addresses this bottleneck by exploring a novel paradigm called zero-shot learning via dataset generation. Here, a powerful LLM is prompted with a task description to generate labeled data that can be used to train a downstream NLP model. For instance, an LLM might be prompted to "generate 500 movie reviews with positive overall sentiment, and another 500 with negative sentiment." The generated data could then be used to train a binary sentiment classifier, effectively leveraging an LLM as a teacher to a smaller student model. With this demo, we introduce Fabricator, an open-source Python toolkit for dataset generation. Fabricator implements common dataset generation workflows, supports a wide range of downstream NLP tasks (such as text classification, question answering, and entity recognition), and is integrated with well-known libraries to facilitate quick experimentation. With Fabricator, we aim to support researchers in conducting reproducible dataset generation experiments using LLMs and help practitioners apply this approach to train models for downstream tasks.
Abstract:Instruction-tuned Large Language Models (LLMs) have recently showcased remarkable ability to generate fitting responses to natural language instructions. However, an open research question concerns the inherent biases of trained models and their responses. For instance, if the data used to tune an LLM is dominantly written by persons with a specific political bias, we might expect generated answers to share this bias. Current research work seeks to de-bias such models, or suppress potentially biased answers. With this demonstration, we take a different view on biases in instruction-tuning: Rather than aiming to suppress them, we aim to make them explicit and transparent. To this end, we present OpinionGPT, a web demo in which users can ask questions and select all biases they wish to investigate. The demo will answer this question using a model fine-tuned on text representing each of the selected biases, allowing side-by-side comparison. To train the underlying model, we identified 11 different biases (political, geographic, gender, age) and derived an instruction-tuning corpus in which each answer was written by members of one of these demographics. This paper presents OpinionGPT, illustrates how we trained the bias-aware model and showcases the web application (available at https://opiniongpt.informatik.hu-berlin.de).
Abstract:Eye movements during reading offer insights into both the reader's cognitive processes and the characteristics of the text that is being read. Hence, the analysis of scanpaths in reading have attracted increasing attention across fields, ranging from cognitive science over linguistics to computer science. In particular, eye-tracking-while-reading data has been argued to bear the potential to make machine-learning-based language models exhibit a more human-like linguistic behavior. However, one of the main challenges in modeling human scanpaths in reading is their dual-sequence nature: the words are ordered following the grammatical rules of the language, whereas the fixations are chronologically ordered. As humans do not strictly read from left-to-right, but rather skip or refixate words and regress to previous words, the alignment of the linguistic and the temporal sequence is non-trivial. In this paper, we develop Eyettention, the first dual-sequence model that simultaneously processes the sequence of words and the chronological sequence of fixations. The alignment of the two sequences is achieved by a cross-sequence attention mechanism. We show that Eyettention outperforms state-of-the-art models in predicting scanpaths. We provide an extensive within- and across-data set evaluation on different languages. An ablation study and qualitative analysis support an in-depth understanding of the model's behavior.
Abstract:Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.