Abstract:This work investigates the adaptation of large pre-trained latent diffusion models to a radically new imaging domain: Synthetic Aperture Radar (SAR). While these generative models, originally trained on natural images, demonstrate impressive capabilities in text-to-image synthesis, they are not natively adapted to represent SAR data, which involves different physics, statistical distributions, and visual characteristics. Using a sizeable SAR dataset (on the order of 100,000 to 1 million images), we address the fundamental question of fine-tuning such models for this unseen modality. We explore and compare multiple fine-tuning strategies, including full model fine-tuning and parameter-efficient approaches like Low-Rank Adaptation (LoRA), focusing separately on the UNet diffusion backbone and the text encoder components. To evaluate generative quality, we combine several metrics: statistical distance from real SAR distributions, textural similarity via GLCM descriptors, and semantic alignment assessed with a CLIP model fine-tuned on SAR data. Our results show that a hybrid tuning strategy yields the best performance: full fine-tuning of the UNet is better at capturing low-level SAR-specific patterns, while LoRA-based partial tuning of the text encoder, combined with embedding learning of the <SAR> token, suffices to preserve prompt alignment. This work provides a methodical strategy for adapting foundation models to unconventional imaging modalities beyond natural image domains.
Abstract:The availability of Synthetic Aperture Radar (SAR) satellite imagery has increased considerably in recent years, with datasets commercially available. However, the acquisition of high-resolution SAR images in airborne configurations, remains costly and limited. Thus, the lack of open source, well-labeled, or easily exploitable SAR text-image datasets is a barrier to the use of existing foundation models in remote sensing applications. In this context, synthetic image generation is a promising solution to augment this scarce data, enabling a broader range of applications. Leveraging over 15 years of ONERA's extensive archival airborn data from acquisition campaigns, we created a comprehensive training dataset of 110 thousands SAR images to exploit a 3.5 billion parameters pre-trained latent diffusion model. In this work, we present a novel approach utilizing spatial conditioning techniques within a foundation model to transform satellite SAR imagery into airborne SAR representations. Additionally, we demonstrate that our pipeline is effective for bridging the realism of simulated images generated by ONERA's physics-based simulator EMPRISE. Our method explores a key application of AI in advancing SAR imaging technology. To the best of our knowledge, we are the first to introduce this approach in the literature.
Abstract:AI assistants are being increasingly used by students enrolled in higher education institutions. While these tools provide opportunities for improved teaching and education, they also pose significant challenges for assessment and learning outcomes. We conceptualize these challenges through the lens of vulnerability, the potential for university assessments and learning outcomes to be impacted by student use of generative AI. We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses. Specifically, we compile a novel dataset of textual assessment questions from 50 courses at EPFL and evaluate whether two AI assistants, GPT-3.5 and GPT-4 can adequately answer these questions. We use eight prompting strategies to produce responses and find that GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions. When grouping courses in our dataset by degree program, these systems already pass non-project assessments of large numbers of core courses in various degree programs, posing risks to higher education accreditation that will be amplified as these models improve. Our results call for revising program-level assessment design in higher education in light of advances in generative AI.