Abstract:Fairness in Federated Learning (FL) is emerging as a critical factor driven by heterogeneous clients' constraints and balanced model performance across various scenarios. In this survey, we delineate a comprehensive classification of the state-of-the-art fairness-aware approaches from a multifaceted perspective, i.e., model performance-oriented and capability-oriented. Moreover, we provide a framework to categorize and address various fairness concerns and associated technical aspects, examining their effectiveness in balancing equity and performance within FL frameworks. We further examine several significant evaluation metrics leveraged to measure fairness quantitatively. Finally, we explore exciting open research directions and propose prospective solutions that could drive future advancements in this important area, laying a solid foundation for researchers working toward fairness in FL.
Abstract:With the proliferation of distributed data sources, Federated Learning (FL) has emerged as a key approach to enable collaborative intelligence through decentralized model training while preserving data privacy. However, conventional FL algorithms often suffer from performance disparities across clients caused by heterogeneous data distributions and unequal participation, which leads to unfair outcomes. Specifically, we focus on two core fairness challenges, i.e., representation bias, arising from misaligned client representations, and collaborative bias, stemming from inequitable contribution during aggregation, both of which degrade model performance and generalizability. To mitigate these disparities, we propose CoRe-Fed, a unified optimization framework that bridges collaborative and representation fairness via embedding-level regularization and fairness-aware aggregation. Initially, an alignment-driven mechanism promotes semantic consistency between local and global embeddings to reduce representational divergence. Subsequently, a dynamic reward-penalty-based aggregation strategy adjusts each client's weight based on participation history and embedding alignment to ensure contribution-aware aggregation. Extensive experiments across diverse models and datasets demonstrate that CoRe-Fed improves both fairness and model performance over the state-of-the-art baseline algorithms.