Abstract:Requirement Engineering (RE) is the foundation of successful software development. In RE, the goal is to ensure that implemented systems satisfy stakeholder needs through rigorous requirements elicitation, validation, and evaluation processes. Despite its critical role, RE continues to face persistent challenges, such as ambiguity, conflicting stakeholder needs, and the complexity of managing evolving requirements. A common view is that Artificial Intelligence (AI) has the potential to streamline the RE process, resulting in improved efficiency, accuracy, and management actions. However, using AI also introduces new concerns, such as ethical issues, biases, and lack of transparency. This paper explores how AI can enhance traditional RE practices by automating labor-intensive tasks, supporting requirement prioritization, and facilitating collaboration between stakeholders and AI systems. The paper also describes the opportunities and challenges that AI brings to RE. In particular, the vision calls for ethical practices in AI, along with a much-enhanced collaboration between academia and industry professionals. The focus should be on creating not only powerful but also trustworthy and practical AI solutions ready to adapt to the fast-paced world of software development.
Abstract:Urban Air Mobility (UAM) is an emerging System of System (SoS) that faces challenges in system architecture, planning, task management, and execution. Traditional architectural approaches struggle with scalability, adaptability, and seamless resource integration within dynamic and complex environments. This paper presents an intelligent holonic architecture that incorporates Large Language Model (LLM) to manage the complexities of UAM. Holons function semi autonomously, allowing for real time coordination among air taxis, ground transport, and vertiports. LLMs process natural language inputs, generate adaptive plans, and manage disruptions such as weather changes or airspace closures.Through a case study of multimodal transportation with electric scooters and air taxis, we demonstrate how this architecture enables dynamic resource allocation, real time replanning, and autonomous adaptation without centralized control, creating more resilient and efficient urban transportation networks. By advancing decentralized control and AI driven adaptability, this work lays the groundwork for resilient, human centric UAM ecosystems, with future efforts targeting hybrid AI integration and real world validation.




Abstract:As modern system of systems (SoS) become increasingly adaptive and human centred, traditional architectures often struggle to support interoperability, reconfigurability, and effective human system interaction. This paper addresses these challenges by advancing the state of the art holonic architecture for SoS, offering two main contributions to support these adaptive needs. First, we propose a layered architecture for holons, which includes reasoning, communication, and capabilities layers. This design facilitates seamless interoperability among heterogeneous constituent systems by improving data exchange and integration. Second, inspired by principles of intelligent manufacturing, we introduce specialised holons namely, supervisor, planner, task, and resource holons aimed at enhancing the adaptability and reconfigurability of SoS. These specialised holons utilise large language models within their reasoning layers to support decision making and ensure real time adaptability. We demonstrate our approach through a 3D mobility case study focused on smart city transportation, showcasing its potential for managing complex, multimodal SoS environments. Additionally, we propose evaluation methods to assess the architecture efficiency and scalability,laying the groundwork for future empirical validations through simulations and real world implementations.
Abstract:In the era of 6G, developing and managing software requires cutting-edge software engineering (SE) theories and practices tailored for such complexity across a vast number of connected edge devices. Our project aims to lead the development of sustainable methods and energy-efficient orchestration models specifically for edge environments, enhancing architectural support driven by AI for contemporary edge-to-cloud continuum computing. This initiative seeks to position Finland at the forefront of the 6G landscape, focusing on sophisticated edge orchestration and robust software architectures to optimize the performance and scalability of edge networks. Collaborating with leading Finnish universities and companies, the project emphasizes deep industry-academia collaboration and international expertise to address critical challenges in edge orchestration and software architecture, aiming to drive significant advancements in software productivity and market impact.




Abstract:Business and technology are intricately connected through logic and design. They are equally sensitive to societal changes and may be devastated by scandal. Cooperative multi-robot systems (MRSs) are on the rise, allowing robots of different types and brands to work together in diverse contexts. Generative artificial intelligence has been a dominant topic in recent artificial intelligence (AI) discussions due to its capacity to mimic humans through the use of natural language and the production of media, including deep fakes. In this article, we focus specifically on the conversational aspects of generative AI, and hence use the term Conversational Generative artificial intelligence (CGI). Like MRSs, CGIs have enormous potential for revolutionizing processes across sectors and transforming the way humans conduct business. From a business perspective, cooperative MRSs alone, with potential conflicts of interest, privacy practices, and safety concerns, require ethical examination. MRSs empowered by CGIs demand multi-dimensional and sophisticated methods to uncover imminent ethical pitfalls. This study focuses on ethics in CGI-empowered MRSs while reporting the stages of developing the MORUL model.