Picture for Nicolás García Trillos

Nicolás García Trillos

Lower Bounds on Adversarial Robustness for Multiclass Classification with General Loss Functions

Add code
Oct 02, 2025
Viaarxiv icon

Vector valued optimal transport: from dynamic to static formulations

Add code
May 06, 2025
Figure 1 for Vector valued optimal transport: from dynamic to static formulations
Viaarxiv icon

Defending Against Diverse Attacks in Federated Learning Through Consensus-Based Bi-Level Optimization

Add code
Dec 03, 2024
Viaarxiv icon

Fermat Distances: Metric Approximation, Spectral Convergence, and Clustering Algorithms

Add code
Jul 07, 2023
Figure 1 for Fermat Distances: Metric Approximation, Spectral Convergence, and Clustering Algorithms
Figure 2 for Fermat Distances: Metric Approximation, Spectral Convergence, and Clustering Algorithms
Figure 3 for Fermat Distances: Metric Approximation, Spectral Convergence, and Clustering Algorithms
Figure 4 for Fermat Distances: Metric Approximation, Spectral Convergence, and Clustering Algorithms
Viaarxiv icon

It begins with a boundary: A geometric view on probabilistically robust learning

Add code
May 30, 2023
Viaarxiv icon

Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity of Neural Networks

Add code
Oct 13, 2022
Figure 1 for Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity of Neural Networks
Figure 2 for Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity of Neural Networks
Figure 3 for Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity of Neural Networks
Figure 4 for Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity of Neural Networks
Viaarxiv icon

Rates of Convergence for Regression with the Graph Poly-Laplacian

Add code
Sep 06, 2022
Viaarxiv icon

The Geometry of Adversarial Training in Binary Classification

Add code
Nov 26, 2021
Figure 1 for The Geometry of Adversarial Training in Binary Classification
Figure 2 for The Geometry of Adversarial Training in Binary Classification
Figure 3 for The Geometry of Adversarial Training in Binary Classification
Figure 4 for The Geometry of Adversarial Training in Binary Classification
Viaarxiv icon

Clustering dynamics on graphs: from spectral clustering to mean shift through Fokker-Planck interpolation

Add code
Aug 18, 2021
Figure 1 for Clustering dynamics on graphs: from spectral clustering to mean shift through Fokker-Planck interpolation
Figure 2 for Clustering dynamics on graphs: from spectral clustering to mean shift through Fokker-Planck interpolation
Figure 3 for Clustering dynamics on graphs: from spectral clustering to mean shift through Fokker-Planck interpolation
Figure 4 for Clustering dynamics on graphs: from spectral clustering to mean shift through Fokker-Planck interpolation
Viaarxiv icon

A variational approach to the consistency of spectral clustering

Add code
Aug 08, 2015
Viaarxiv icon