Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:Linear temporal logic (LTL) is widely used in industrial verification. LTL formulae can be learned from traces. Scaling LTL formula learning is an open problem. We implement the first GPU-based LTL learner using a novel form of enumerative program synthesis. The learner is sound and complete. Our benchmarks indicate that it handles traces at least 2048 times more numerous, and on average at least 46 times faster than existing state-of-the-art learners. This is achieved with, among others, novel branch-free LTL semantics that has $O(\log n)$ time complexity, where $n$ is trace length, while previous implementations are $O(n^2)$ or worse (assuming bitwise boolean operations and shifts by powers of 2 have unit costs -- a realistic assumption on modern processors).

Via

Abstract:The field of Reinforcement Learning (RL) is concerned with algorithms for learning optimal policies in unknown stochastic environments. Programmatic RL studies representations of policies as programs, meaning involving higher order constructs such as control loops. Despite attracting a lot of attention at the intersection of the machine learning and formal methods communities, very little is known on the theoretical front about programmatic RL: what are good classes of programmatic policies? How large are optimal programmatic policies? How can we learn them? The goal of this paper is to give first answers to these questions, initiating a theoretical study of programmatic RL.

Via

Abstract:We study the problem of learning linear temporal logic (LTL) formulas from examples, as a first step towards expressing a property separating positive and negative instances in a way that is comprehensible for humans. In this paper we initiate the study of the computational complexity of the problem. Our main results are hardness results: we show that the LTL learning problem is NP-complete, both for the full logic and for almost all of its fragments. This motivates the search for efficient heuristics, and highlights the complexity of expressing separating properties in concise natural language.

Via

Figures and Tables:

Abstract:We tackle the problem of automatic generation of computer programs from a few pairs of input-output examples. The starting point of this work is the observation that in many applications a solution program must use external knowledge not present in the examples: we call such programs knowledge-powered since they can refer to information collected from a knowledge graph such as Wikipedia. This paper makes a first step towards knowledge-powered program synthesis. We present WikiCoder, a system building upon state of the art machine-learned program synthesizers and integrating knowledge graphs. We evaluate it to show its wide applicability over different domains and discuss its limitations. WikiCoder solves tasks that no program synthesizers were able to solve before thanks to the use of knowledge graphs, while integrating with recent developments in the field to operate at scale.

Via

Figures and Tables:

Abstract:Linear temporal logic (LTL) is a specification language for finite sequences (called traces) widely used in program verification, motion planning in robotics, process mining, and many other areas. We consider the problem of learning LTL formulas for classifying traces; despite a growing interest of the research community, existing solutions suffer from two limitations: they do not scale beyond small formulas, and they may exhaust computational resources without returning any result. We introduce a new algorithm addressing both issues: our algorithm is able to construct formulas an order of magnitude larger than previous methods, and it is anytime, meaning that it in most cases successfully outputs a formula, albeit possibly not of minimal size. We evaluate the performances of our algorithm using an open source implementation against publicly available benchmarks.

Via

Authors:Nathanaël Fijalkow, Guillaume Lagarde, Théo Matricon, Kevin Ellis, Pierre Ohlmann, Akarsh Potta

Figures and Tables:

Abstract:We consider the problem of automatically constructing computer programs from input-output examples. We investigate how to augment probabilistic and neural program synthesis methods with new search algorithms, proposing a framework called distribution-based search. Within this framework, we introduce two new search algorithms: Heap Search, an enumerative method, and SQRT Sampling, a probabilistic method. We prove certain optimality guarantees for both methods, show how they integrate with probabilistic and neural techniques, and demonstrate how they can operate at scale across parallel compute environments. Collectively these findings offer theoretical and applied studies of search algorithms for program synthesis that integrate with recent developments in machine-learned program synthesizers.

Via

Abstract:In this paper we initiate the study of the computational complexity of learning linear temporal logic (LTL) formulas from examples. We construct approximation algorithms for fragments of LTL and prove hardness results; in particular we obtain tight bounds for approximation of the fragment containing only the next operator and conjunctions, and prove NP-completeness results for many fragments.

Via

Figures and Tables:

Abstract:Programming by example is the problem of synthesizing a program from a small set of input / output pairs. Recent works applying machine learning methods to this task show promise, but are typically reliant on generating synthetic examples for training. A particular challenge lies in generating meaningful sets of inputs and outputs, which well-characterize a given program and accurately demonstrate its behavior. Where examples used for testing are generated by the same method as training data then the performance of a model may be partly reliant on this similarity. In this paper we introduce a novel approach using an SMT solver to synthesize inputs which cover a diverse set of behaviors for a given program. We carry out a case study comparing this method to existing synthetic data generation procedures in the literature, and find that data generated using our approach improves both the discriminatory power of example sets and the ability of trained machine learning models to generalize to unfamiliar data.

Via

Figures and Tables:

Abstract:The success of neural networks across most machine learning tasks and the persistence of adversarial examples have made the verification of such models an important quest. Several techniques have been successfully developed to verify robustness, and are now able to evaluate neural networks with thousands of nodes. The main weakness of this approach is in the specification: robustness is asserted on a validation set consisting of a finite set of examples, i.e. locally. We propose a notion of global robustness based on generative models, which asserts the robustness on a very large and representative set of examples. We show how this can be used for verifying neural networks. In this paper we experimentally explore the merits of this approach, and show how it can be used to construct realistic adversarial examples.

Via