Abstract:Named Entity Recognition (NER) plays a pivotal role in various Natural Language Processing (NLP) tasks by identifying and classifying named entities (NEs) from unstructured data into predefined categories such as person, organization, location, date, and time. While extensive research exists for high-resource languages and general domains, NER in Urdu particularly within domain-specific contexts like education remains significantly underexplored. This is Due to lack of annotated datasets for educational content which limits the ability of existing models to accurately identify entities such as academic roles, course names, and institutional terms, underscoring the urgent need for targeted resources in this domain. To the best of our knowledge, no dataset exists in the domain of the Urdu language for this purpose. To achieve this objective this study makes three key contributions. Firstly, we created a manually annotated dataset in the education domain, named EDU-NER-2025, which contains 13 unique most important entities related to education domain. Second, we describe our annotation process and guidelines in detail and discuss the challenges of labelling EDU-NER-2025 dataset. Third, we addressed and analyzed key linguistic challenges, such as morphological complexity and ambiguity, which are prevalent in formal Urdu texts.
Abstract:Hyperspectral image (HSI) classification remains a challenging task due to the intricate spatial-spectral correlations. Existing transformer models excel in capturing long-range dependencies but often suffer from information redundancy and attention inefficiencies, limiting their ability to model fine-grained relationships crucial for HSI classification. To overcome these limitations, this work proposes MemFormer, a lightweight and memory-enhanced transformer. MemFormer introduces a memory-enhanced multi-head attention mechanism that iteratively refines a dynamic memory module, enhancing feature extraction while reducing redundancy across layers. Additionally, a dynamic memory enrichment strategy progressively captures complex spatial and spectral dependencies, leading to more expressive feature representations. To further improve structural consistency, we incorporate a spatial-spectral positional encoding (SSPE) tailored for HSI data, ensuring continuity without the computational burden of convolution-based approaches. Extensive experiments on benchmark datasets demonstrate that MemFormer achieves superior classification accuracy, outperforming state-of-the-art methods.
Abstract:Drug overdose remains a critical global health issue, often driven by misuse of opioids, painkillers, and psychiatric medications. Traditional research methods face limitations, whereas social media offers real-time insights into self-reported substance use and overdose symptoms. This study proposes an AI-driven NLP framework trained on annotated social media data to detect commonly used drugs and associated overdose symptoms. Using a hybrid annotation strategy with LLMs and human annotators, we applied traditional ML models, neural networks, and advanced transformer-based models. Our framework achieved 98% accuracy in multi-class and 97% in multi-label classification, outperforming baseline models by up to 8%. These findings highlight the potential of AI for supporting public health surveillance and personalized intervention strategies.
Abstract:Hyperspectral imaging (HSI) provides rich spectral-spatial information across hundreds of contiguous bands, enabling precise material discrimination in applications such as environmental monitoring, agriculture, and urban analysis. However, the high dimensionality and spectral variability of HSI data pose significant challenges for feature extraction and classification. This paper presents EnergyFormer, a transformer-based framework designed to address these challenges through three key innovations: (1) Multi-Head Energy Attention (MHEA), which optimizes an energy function to selectively enhance critical spectral-spatial features, improving feature discrimination; (2) Fourier Position Embedding (FoPE), which adaptively encodes spectral and spatial dependencies to reinforce long-range interactions; and (3) Enhanced Convolutional Block Attention Module (ECBAM), which selectively amplifies informative wavelength bands and spatial structures, enhancing representation learning. Extensive experiments on the WHU-Hi-HanChuan, Salinas, and Pavia University datasets demonstrate that EnergyFormer achieves exceptional overall accuracies of 99.28\%, 98.63\%, and 98.72\%, respectively, outperforming state-of-the-art CNN, transformer, and Mamba-based models. The source code will be made available at https://github.com/mahmad000.
Abstract:Hyperspectral image (HSI) classification plays a pivotal role in domains such as environmental monitoring, agriculture, and urban planning. However, it faces significant challenges due to the high-dimensional nature of the data and the complex spectral-spatial relationships inherent in HSI. Traditional methods, including conventional machine learning and convolutional neural networks (CNNs), often struggle to effectively capture these intricate spectral-spatial features and global contextual information. Transformer-based models, while powerful in capturing long-range dependencies, often demand substantial computational resources, posing challenges in scenarios where labeled datasets are limited, as is commonly seen in HSI applications. To overcome these challenges, this work proposes GraphMamba, a hybrid model that combines spectral-spatial token generation, graph-based token prioritization, and cross-attention mechanisms. The model introduces a novel hybridization of state-space modeling and Gated Recurrent Units (GRU), capturing both linear and nonlinear spatial-spectral dynamics. GraphMamba enhances the ability to model complex spatial-spectral relationships while maintaining scalability and computational efficiency across diverse HSI datasets. Through comprehensive experiments, we demonstrate that GraphMamba outperforms existing state-of-the-art models, offering a scalable and robust solution for complex HSI classification tasks.
Abstract:Hyperspectral image classification (HSIC) has gained significant attention because of its potential in analyzing high-dimensional data with rich spectral and spatial information. In this work, we propose the Differential Spatial-Spectral Transformer (DiffFormer), a novel framework designed to address the inherent challenges of HSIC, such as spectral redundancy and spatial discontinuity. The DiffFormer leverages a Differential Multi-Head Self-Attention (DMHSA) mechanism, which enhances local feature discrimination by introducing differential attention to accentuate subtle variations across neighboring spectral-spatial patches. The architecture integrates Spectral-Spatial Tokenization through three-dimensional (3D) convolution-based patch embeddings, positional encoding, and a stack of transformer layers equipped with the SWiGLU activation function for efficient feature extraction (SwiGLU is a variant of the Gated Linear Unit (GLU) activation function). A token-based classification head further ensures robust representation learning, enabling precise labeling of hyperspectral pixels. Extensive experiments on benchmark hyperspectral datasets demonstrate the superiority of DiffFormer in terms of classification accuracy, computational efficiency, and generalizability, compared to existing state-of-the-art (SOTA) methods. In addition, this work provides a detailed analysis of computational complexity, showcasing the scalability of the model for large-scale remote sensing applications. The source code will be made available at \url{https://github.com/mahmad000/DiffFormer} after the first round of revision.
Abstract:The classification of hyperspectral images (HSI) is a challenging task due to the high spectral dimensionality and limited labeled data typically available for training. In this study, we propose a novel multi-stage active transfer learning (ATL) framework that integrates a Spatial-Spectral Transformer (SST) with an active learning process for efficient HSI classification. Our approach leverages a pre-trained (initially trained) SST model, fine-tuned iteratively on newly acquired labeled samples using an uncertainty-diversity (Spatial-Spectral Neighborhood Diversity) querying mechanism. This mechanism identifies the most informative and diverse samples, thereby optimizing the transfer learning process to reduce both labeling costs and model uncertainty. We further introduce a dynamic freezing strategy, selectively freezing layers of the SST model to minimize computational overhead while maintaining adaptability to spectral variations in new data. One of the key innovations in our work is the self-calibration of spectral and spatial attention weights, achieved through uncertainty-guided active learning. This not only enhances the model's robustness in handling dynamic and disjoint spectral profiles but also improves generalization across multiple HSI datasets. Additionally, we present a diversity-promoting sampling strategy that ensures the selected samples span distinct spectral regions, preventing overfitting to particular spectral classes. Experiments on benchmark HSI datasets demonstrate that the SST-ATL framework significantly outperforms existing CNN and SST-based methods, offering superior accuracy, efficiency, and computational performance. The source code can be accessed at \url{https://github.com/mahmad000/ATL-SST}.
Abstract:Hyperspectral Imaging (HSI) has proven to be a powerful tool for capturing detailed spectral and spatial information across diverse applications. Despite the advancements in Deep Learning (DL) and Transformer architectures for HSI Classification (HSIC), challenges such as computational efficiency and the need for extensive labeled data persist. This paper introduces WaveMamba, a novel approach that integrates wavelet transformation with the Spatial-Spectral Mamba architecture to enhance HSIC. WaveMamba captures both local texture patterns and global contextual relationships in an end-to-end trainable model. The Wavelet-based enhanced features are then processed through the state-space architecture to model spatial-spectral relationships and temporal dependencies. The experimental results indicate that WaveMamba surpasses existing models, achieving an accuracy improvement of 4.5\% on the University of Houston dataset and a 2.0\% increase on the Pavia University dataset. These findings validate its effectiveness in addressing the complex data interactions inherent in HSIs.
Abstract:Spatial-Spectral Mamba (SSM) improves computational efficiency and captures long-range dependencies, addressing Transformer limitations. However, traditional Mamba models overlook rich spectral information in HSIs and struggle with high dimensionality and sequential data. To address these issues, we propose the SSM with multi-head self-attention and token enhancement (MHSSMamba). This model integrates spectral and spatial information by enhancing spectral tokens and using multi-head attention to capture complex relationships between spectral bands and spatial locations. It also manages long-range dependencies and the sequential nature of HSI data, preserving contextual information across spectral bands. MHSSMamba achieved remarkable classification accuracies of 97.62\% on Pavia University, 96.92\% on the University of Houston, 96.85\% on Salinas, and 99.49\% on Wuhan-longKou datasets.
Abstract:In recent years, Transformers have garnered significant attention for Hyperspectral Image Classification (HSIC) due to their self-attention mechanism, which provides strong classification performance. However, these models face major challenges in computational efficiency, as their complexity increases quadratically with the sequence length. The Mamba architecture, leveraging a State Space Model, offers a more efficient alternative to Transformers. This paper introduces the Spatial-Spectral Morphological Mamba (MorpMamba) model. In the MorpMamba model, a token generation module first converts the Hyperspectral Image (HSI) patch into spatial-spectral tokens. These tokens are then processed by a morphology block, which computes structural and shape information using depthwise separable convolutional operations. The extracted information is enhanced in a feature enhancement module that adjusts the spatial and spectral tokens based on the center region of the HSI sample, allowing for effective information fusion within each block. Subsequently, the tokens are refined in a multi-head self-attention block to further improve the feature space. Finally, the combined information is fed into the state space block for classification and the creation of the ground truth map. Experiments on widely used Hyperspectral (HS) datasets demonstrate that the MorpMamba model outperforms (parametric efficiency) both CNN and Transformer models.