Abstract:Spreadsheets are critical to data-centric tasks, with rich, structured layouts that enable efficient information transmission. Given the time and expertise required for manual spreadsheet layout design, there is an urgent need for automated solutions. However, existing automated layout models are ill-suited to spreadsheets, as they often (1) treat components as axis-aligned rectangles with continuous coordinates, overlooking the inherently discrete, grid-based structure of spreadsheets; and (2) neglect interrelated semantics, such as data dependencies and contextual links, unique to spreadsheets. In this paper, we first formalize the spreadsheet layout generation task, supported by a seven-criterion evaluation protocol and a dataset of 3,326 spreadsheets. We then introduce SheetDesigner, a zero-shot and training-free framework using Multimodal Large Language Models (MLLMs) that combines rule and vision reflection for component placement and content population. SheetDesigner outperforms five baselines by at least 22.6\%. We further find that through vision modality, MLLMs handle overlap and balance well but struggle with alignment, necessitates hybrid rule and visual reflection strategies. Our codes and data is available at Github.
Abstract:RAG can enhance the performance of LLMs on knowledge-intensive tasks. Various RAG paradigms, including vanilla, planning-based, and iterative RAG, are built upon 2 cores: the retriever, which should robustly select relevant documents across complex queries, and the generator, which should faithfully synthesize responses. However, existing retrievers rely heavily on public knowledge and struggle with queries of varying logical complexity and clue completeness, while generators frequently face fidelity problems. In this work, we introduce RAGSynth, a framework that includes a data construction modeling and a corresponding synthetic data generation implementation, designed to optimize retriever robustness and generator fidelity. Additionally, we present SynthBench, a benchmark encompassing 8 domain-specific documents across 4 domains, featuring diverse query complexities, clue completeness, and fine-grained citation granularity. Leveraging RAGSynth, we generate a large-scale synthetic dataset, including single and multi-hop. Extensive experiments demonstrate that the synthetic data significantly improves the robustness of the retrievers and the fidelity of the generators. Additional evaluations confirm that RAGSynth can also generalize well across different domains. By integrating the optimized retrievers into various RAG paradigms, we consistently observe enhanced RAG system performance. We have open-sourced the implementation on https://github.com/EachSheep/RAGSynth.