Abstract:Cardiovascular disease arises from interactions between inherited risk, molecular programmes, and tissue-scale remodelling that are observed clinically through imaging. Health systems now routinely generate large volumes of cardiac MRI, CT and echocardiography together with bulk, single-cell and spatial transcriptomics, yet these data are still analysed in separate pipelines. This review examines joint representations that link cardiac imaging phenotypes to transcriptomic and spatially resolved molecular states. An imaging-anchored perspective is adopted in which echocardiography, cardiac MRI and CT define a spatial phenotype of the heart, and bulk, single-cell and spatial transcriptomics provide cell-type- and location-specific molecular context. The biological and technical characteristics of these modalities are first summarised, and representation-learning strategies for each are outlined. Multimodal fusion approaches are reviewed, with emphasis on handling missing data, limited sample size, and batch effects. Finally, integrative pipelines for radiogenomics, spatial molecular alignment, and image-based prediction of gene expression are discussed, together with common failure modes, practical considerations, and open challenges. Spatial multiomics of human myocardium and atherosclerotic plaque, single-cell and spatial foundation models, and multimodal medical foundation models are collectively bringing imaging-anchored multiomics closer to large-scale cardiovascular translation.




Abstract:Deep models are used for molecular property prediction, yet they are often difficult to interpret and may rely on spurious context rather than causal structure, which reduces reliability under distribution shift and harms predictive performance. We introduce CLaP (Causal Layerwise Peeling), a framework that separates causal signal from context in a layerwise manner and integrates diverse graph representations of molecules. At each layer, a causal block performs a soft split into causal and non-causal branches, fuses causal evidence across modalities, and progressively removes batch-coupled context to focus on label-relevant structure, thereby limiting shortcut signals and stabilizing layerwise refinement. Across four molecular benchmarks, CLaP consistently improves MAE, MSE, and $R^2$ over competitive baselines. The model also produces atom-level causal saliency maps that highlight substructures responsible for predictions, providing actionable guidance for targeted molecular edits. Case studies confirm the accuracy of these maps and their alignment with chemical intuition. By peeling context from cause at every layer, the model yields predictors that are both accurate and interpretable for molecular design.