Abstract:The standard content-based attention mechanism typically used in sequence-to-sequence models is computationally expensive as it requires the comparison of large encoder and decoder states at each time step. In this work, we propose an alternative attention mechanism based on a fixed size memory representation that is more efficient. Our technique predicts a compact set of K attention contexts during encoding and lets the decoder compute an efficient lookup that does not need to consult the memory. We show that our approach performs on-par with the standard attention mechanism while yielding inference speedups of 20% for real-world translation tasks and more for tasks with longer sequences. By visualizing attention scores we demonstrate that our models learn distinct, meaningful alignments.
Abstract:Recurrent neural network models with an attention mechanism have proven to be extremely effective on a wide variety of sequence-to-sequence problems. However, the fact that soft attention mechanisms perform a pass over the entire input sequence when producing each element in the output sequence precludes their use in online settings and results in a quadratic time complexity. Based on the insight that the alignment between input and output sequence elements is monotonic in many problems of interest, we propose an end-to-end differentiable method for learning monotonic alignments which, at test time, enables computing attention online and in linear time. We validate our approach on sentence summarization, machine translation, and online speech recognition problems and achieve results competitive with existing sequence-to-sequence models.
Abstract:Neural Machine Translation (NMT) has shown remarkable progress over the past few years with production systems now being deployed to end-users. One major drawback of current architectures is that they are expensive to train, typically requiring days to weeks of GPU time to converge. This makes exhaustive hyperparameter search, as is commonly done with other neural network architectures, prohibitively expensive. In this work, we present the first large-scale analysis of NMT architecture hyperparameters. We report empirical results and variance numbers for several hundred experimental runs, corresponding to over 250,000 GPU hours on the standard WMT English to German translation task. Our experiments lead to novel insights and practical advice for building and extending NMT architectures. As part of this contribution, we release an open-source NMT framework that enables researchers to easily experiment with novel techniques and reproduce state of the art results.
Abstract:Neural Machine Translation (NMT), like many other deep learning domains, typically suffers from over-parameterization, resulting in large storage sizes. This paper examines three simple magnitude-based pruning schemes to compress NMT models, namely class-blind, class-uniform, and class-distribution, which differ in terms of how pruning thresholds are computed for the different classes of weights in the NMT architecture. We demonstrate the efficacy of weight pruning as a compression technique for a state-of-the-art NMT system. We show that an NMT model with over 200 million parameters can be pruned by 40% with very little performance loss as measured on the WMT'14 English-German translation task. This sheds light on the distribution of redundancy in the NMT architecture. Our main result is that with retraining, we can recover and even surpass the original performance with an 80%-pruned model.
Abstract:Nearly all previous work on neural machine translation (NMT) has used quite restricted vocabularies, perhaps with a subsequent method to patch in unknown words. This paper presents a novel word-character solution to achieving open vocabulary NMT. We build hybrid systems that translate mostly at the word level and consult the character components for rare words. Our character-level recurrent neural networks compute source word representations and recover unknown target words when needed. The twofold advantage of such a hybrid approach is that it is much faster and easier to train than character-based ones; at the same time, it never produces unknown words as in the case of word-based models. On the WMT'15 English to Czech translation task, this hybrid approach offers an addition boost of +2.1-11.4 BLEU points over models that already handle unknown words. Our best system achieves a new state-of-the-art result with 20.7 BLEU score. We demonstrate that our character models can successfully learn to not only generate well-formed words for Czech, a highly-inflected language with a very complex vocabulary, but also build correct representations for English source words.
Abstract:Sequence to sequence learning has recently emerged as a new paradigm in supervised learning. To date, most of its applications focused on only one task and not much work explored this framework for multiple tasks. This paper examines three multi-task learning (MTL) settings for sequence to sequence models: (a) the oneto-many setting - where the encoder is shared between several tasks such as machine translation and syntactic parsing, (b) the many-to-one setting - useful when only the decoder can be shared, as in the case of translation and image caption generation, and (c) the many-to-many setting - where multiple encoders and decoders are shared, which is the case with unsupervised objectives and translation. Our results show that training on a small amount of parsing and image caption data can improve the translation quality between English and German by up to 1.5 BLEU points over strong single-task baselines on the WMT benchmarks. Furthermore, we have established a new state-of-the-art result in constituent parsing with 93.0 F1. Lastly, we reveal interesting properties of the two unsupervised learning objectives, autoencoder and skip-thought, in the MTL context: autoencoder helps less in terms of perplexities but more on BLEU scores compared to skip-thought.
Abstract:An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation. However, there has been little work exploring useful architectures for attention-based NMT. This paper examines two simple and effective classes of attentional mechanism: a global approach which always attends to all source words and a local one that only looks at a subset of source words at a time. We demonstrate the effectiveness of both approaches over the WMT translation tasks between English and German in both directions. With local attention, we achieve a significant gain of 5.0 BLEU points over non-attentional systems which already incorporate known techniques such as dropout. Our ensemble model using different attention architectures has established a new state-of-the-art result in the WMT'15 English to German translation task with 25.9 BLEU points, an improvement of 1.0 BLEU points over the existing best system backed by NMT and an n-gram reranker.
Abstract:Recursive neural models, which use syntactic parse trees to recursively generate representations bottom-up, are a popular architecture. But there have not been rigorous evaluations showing for exactly which tasks this syntax-based method is appropriate. In this paper we benchmark {\bf recursive} neural models against sequential {\bf recurrent} neural models (simple recurrent and LSTM models), enforcing apples-to-apples comparison as much as possible. We investigate 4 tasks: (1) sentiment classification at the sentence level and phrase level; (2) matching questions to answer-phrases; (3) discourse parsing; (4) semantic relation extraction (e.g., {\em component-whole} between nouns). Our goal is to understand better when, and why, recursive models can outperform simpler models. We find that recursive models help mainly on tasks (like semantic relation extraction) that require associating headwords across a long distance, particularly on very long sequences. We then introduce a method for allowing recurrent models to achieve similar performance: breaking long sentences into clause-like units at punctuation and processing them separately before combining. Our results thus help understand the limitations of both classes of models, and suggest directions for improving recurrent models.
Abstract:Natural language generation of coherent long texts like paragraphs or longer documents is a challenging problem for recurrent networks models. In this paper, we explore an important step toward this generation task: training an LSTM (Long-short term memory) auto-encoder to preserve and reconstruct multi-sentence paragraphs. We introduce an LSTM model that hierarchically builds an embedding for a paragraph from embeddings for sentences and words, then decodes this embedding to reconstruct the original paragraph. We evaluate the reconstructed paragraph using standard metrics like ROUGE and Entity Grid, showing that neural models are able to encode texts in a way that preserve syntactic, semantic, and discourse coherence. While only a first step toward generating coherent text units from neural models, our work has the potential to significantly impact natural language generation and summarization\footnote{Code for the three models described in this paper can be found at www.stanford.edu/~jiweil/ .
Abstract:Neural Machine Translation (NMT) is a new approach to machine translation that has shown promising results that are comparable to traditional approaches. A significant weakness in conventional NMT systems is their inability to correctly translate very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single unk symbol that represents every possible out-of-vocabulary (OOV) word. In this paper, we propose and implement an effective technique to address this problem. We train an NMT system on data that is augmented by the output of a word alignment algorithm, allowing the NMT system to emit, for each OOV word in the target sentence, the position of its corresponding word in the source sentence. This information is later utilized in a post-processing step that translates every OOV word using a dictionary. Our experiments on the WMT14 English to French translation task show that this method provides a substantial improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use this technique. With 37.5 BLEU points, our NMT system is the first to surpass the best result achieved on a WMT14 contest task.