Abstract:Medical Large Multi-modal Models (LMMs) have demonstrated remarkable capabilities in medical data interpretation. However, these models frequently generate hallucinations contradicting source evidence, particularly due to inadequate localization reasoning. This work reveals a critical limitation in current medical LMMs: instead of analyzing relevant pathological regions, they often rely on linguistic patterns or attend to irrelevant image areas when responding to disease-related queries. To address this, we introduce HEAL-MedVQA (Hallucination Evaluation via Localization MedVQA), a comprehensive benchmark designed to evaluate LMMs' localization abilities and hallucination robustness. HEAL-MedVQA features (i) two innovative evaluation protocols to assess visual and textual shortcut learning, and (ii) a dataset of 67K VQA pairs, with doctor-annotated anatomical segmentation masks for pathological regions. To improve visual reasoning, we propose the Localize-before-Answer (LobA) framework, which trains LMMs to localize target regions of interest and self-prompt to emphasize segmented pathological areas, generating grounded and reliable answers. Experimental results demonstrate that our approach significantly outperforms state-of-the-art biomedical LMMs on the challenging HEAL-MedVQA benchmark, advancing robustness in medical VQA.
Abstract:Traffic video description and analysis have received much attention recently due to the growing demand for efficient and reliable urban surveillance systems. Most existing methods only focus on locating traffic event segments, which severely lack descriptive details related to the behaviour and context of all the subjects of interest in the events. In this paper, we present TrafficVLM, a novel multi-modal dense video captioning model for vehicle ego camera view. TrafficVLM models traffic video events at different levels of analysis, both spatially and temporally, and generates long fine-grained descriptions for the vehicle and pedestrian at different phases of the event. We also propose a conditional component for TrafficVLM to control the generation outputs and a multi-task fine-tuning paradigm to enhance TrafficVLM's learning capability. Experiments show that TrafficVLM performs well on both vehicle and overhead camera views. Our solution achieved outstanding results in Track 2 of the AI City Challenge 2024, ranking us third in the challenge standings. Our code is publicly available at https://github.com/quangminhdinh/TrafficVLM.