Abstract:We introduce Grade School Math with Distracting Context (GSM-DC), a synthetic benchmark to evaluate Large Language Models' (LLMs) reasoning robustness against systematically controlled irrelevant context (IC). GSM-DC constructs symbolic reasoning graphs with precise distractor injections, enabling rigorous, reproducible evaluation. Our experiments demonstrate that LLMs are significantly sensitive to IC, affecting both reasoning path selection and arithmetic accuracy. Additionally, training models with strong distractors improves performance in both in-distribution and out-of-distribution scenarios. We further propose a stepwise tree search guided by a process reward model, which notably enhances robustness in out-of-distribution conditions.
Abstract:We investigate the usage of Large Language Model (LLM) in collecting high-quality data to warm-start Reinforcement Learning (RL) algorithms for learning in some classical Markov Decision Process (MDP) environments. In this work, we focus on using LLM to generate an off-policy dataset that sufficiently covers state-actions visited by optimal policies, then later using an RL algorithm to explore the environment and improve the policy suggested by the LLM. Our algorithm, LORO, can both converge to an optimal policy and have a high sample efficiency thanks to the LLM's good starting policy. On multiple OpenAI Gym environments, such as CartPole and Pendulum, we empirically demonstrate that LORO outperforms baseline algorithms such as pure LLM-based policies, pure RL, and a naive combination of the two, achieving up to $4 \times$ the cumulative rewards of the pure RL baseline.
Abstract:We introduce CopySpec, an innovative technique designed to tackle the inefficiencies LLMs face when generating responses that closely resemble previous outputs. CopySpec identifies repeated sequences in the model's chat history and speculates that the same tokens will follow, enabling seamless copying without compromising output quality or requiring additional GPU memory. To evaluate the effectiveness of our approach, we conducted experiments using five LLMs and five datasets: MT-Bench, CNN/DM, GSM-8K, HumanEval, and our newly created dataset, MT-Redundant. MT-Redundant, introduced in this paper, transforms the second turn of MT-Bench into a request for variations of the first turn's answer, simulating real-world scenarios where users request modifications to prior responses. Our results demonstrate significant speed-ups: up to 2.35x on CNN/DM, 3.08x on the second turn of select MT-Redundant categories, and 2.66x on the third turn of GSM-8K's self-correction tasks. Moreover, we show that CopySpec integrates seamlessly with speculative decoding, yielding an average 49% additional speed-up over speculative decoding for the second turn of MT-Redundant across all eight categories. While LLMs, even with speculative decoding, suffer from slower inference as context sizes grow, CopySpec leverages the expanded context to accelerate inference, making it faster as the context size increases. Our code and dataset are publicly available at https://github.com/RazvanDu/CopySpec.