



Abstract:The dominant paradigm for Audio-Text Retrieval (ATR) relies on mini-batch-based contrastive learning. This process, however, is inherently limited by what we formalize as the Gradient Locality Bottleneck (GLB), which structurally prevents models from leveraging out-of-batch knowledge and thus impairs fine-grained and long-tail learning. While external knowledge-enhanced methods can alleviate the GLB, we identify a critical, unaddressed side effect: the Representation-Drift Mismatch (RDM), where a static knowledge base becomes progressively misaligned with the evolving model, turning guidance into noise. To address this dual challenge, we propose the Adaptive Self-improving Knowledge (ASK) framework, a model-agnostic, plug-and-play solution. ASK breaks the GLB via multi-grained knowledge injection, systematically mitigates RDM through dynamic knowledge refinement, and introduces a novel adaptive reliability weighting scheme to ensure consistent knowledge contributes to optimization. Experimental results on two benchmark datasets with superior, state-of-the-art performance justify the efficacy of our proposed ASK framework.
Abstract:End-to-end learning has shown great potential in autonomous parking, yet the lack of publicly available datasets limits reproducibility and benchmarking. While prior work introduced a visual-based parking model and a pipeline for data generation, training, and close-loop test, the dataset itself was not released. To bridge this gap, we create and open-source a high-quality dataset for end-to-end autonomous parking. Using the original model, we achieve an overall success rate of 85.16% with lower average position and orientation errors (0.24 meters and 0.34 degrees).