Abstract:Linux kernel tuning is essential for optimizing operating system (OS) performance. However, existing methods often face challenges in terms of efficiency, scalability, and generalization. This paper introduces OS-R1, an agentic Linux kernel tuning framework powered by rule-based reinforcement learning (RL). By abstracting the kernel configuration space as an RL environment, OS-R1 facilitates efficient exploration by large language models (LLMs) and ensures accurate configuration modifications. Additionally, custom reward functions are designed to enhance reasoning standardization, configuration modification accuracy, and system performance awareness of the LLMs. Furthermore, we propose a two-phase training process that accelerates convergence and minimizes retraining across diverse tuning scenarios. Experimental results show that OS-R1 significantly outperforms existing baseline methods, achieving up to 5.6% performance improvement over heuristic tuning and maintaining high data efficiency. Notably, OS-R1 is adaptable across various real-world applications, demonstrating its potential for practical deployment in diverse environments. Our dataset and code are publicly available at https://github.com/LHY-24/OS-R1.
Abstract:Complex Logical Query Answering (CLQA) involves intricate multi-hop logical reasoning over large-scale and potentially incomplete Knowledge Graphs (KGs). Although existing CLQA algorithms achieve high accuracy in answering such queries, their reasoning time and memory usage scale significantly with the number of First-Order Logic (FOL) operators involved, creating serious challenges for practical deployment. In addition, current research primarily focuses on algorithm-level optimizations for CLQA tasks, often overlooking compiler-level optimizations, which can offer greater generality and scalability. To address these limitations, we introduce a Knowledge Graph Compiler, namely KGCompiler, the first deep learning compiler specifically designed for CLQA tasks. By incorporating KG-specific optimizations proposed in this paper, KGCompiler enhances the reasoning performance of CLQA algorithms without requiring additional manual modifications to their implementations. At the same time, it significantly reduces memory usage. Extensive experiments demonstrate that KGCompiler accelerates CLQA algorithms by factors ranging from 1.04x to 8.26x, with an average speedup of 3.71x. We also provide an interface to enable hands-on experience with KGCompiler.