Alert button
Picture for Mikhail Pavlov

Mikhail Pavlov

Alert button

Evaluating Large Language Models Trained on Code

Jul 14, 2021
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, Wojciech Zaremba

Figure 1 for Evaluating Large Language Models Trained on Code
Figure 2 for Evaluating Large Language Models Trained on Code
Figure 3 for Evaluating Large Language Models Trained on Code
Figure 4 for Evaluating Large Language Models Trained on Code

We introduce Codex, a GPT language model fine-tuned on publicly available code from GitHub, and study its Python code-writing capabilities. A distinct production version of Codex powers GitHub Copilot. On HumanEval, a new evaluation set we release to measure functional correctness for synthesizing programs from docstrings, our model solves 28.8% of the problems, while GPT-3 solves 0% and GPT-J solves 11.4%. Furthermore, we find that repeated sampling from the model is a surprisingly effective strategy for producing working solutions to difficult prompts. Using this method, we solve 70.2% of our problems with 100 samples per problem. Careful investigation of our model reveals its limitations, including difficulty with docstrings describing long chains of operations and with binding operations to variables. Finally, we discuss the potential broader impacts of deploying powerful code generation technologies, covering safety, security, and economics.

* corrected typos, added references, added authors, added acknowledgements 
Viaarxiv icon

Zero-Shot Text-to-Image Generation

Feb 26, 2021
Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever

Figure 1 for Zero-Shot Text-to-Image Generation
Figure 2 for Zero-Shot Text-to-Image Generation
Figure 3 for Zero-Shot Text-to-Image Generation
Figure 4 for Zero-Shot Text-to-Image Generation

Text-to-image generation has traditionally focused on finding better modeling assumptions for training on a fixed dataset. These assumptions might involve complex architectures, auxiliary losses, or side information such as object part labels or segmentation masks supplied during training. We describe a simple approach for this task based on a transformer that autoregressively models the text and image tokens as a single stream of data. With sufficient data and scale, our approach is competitive with previous domain-specific models when evaluated in a zero-shot fashion.

Viaarxiv icon

Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments

Apr 02, 2018
Łukasz Kidziński, Sharada Prasanna Mohanty, Carmichael Ong, Zhewei Huang, Shuchang Zhou, Anton Pechenko, Adam Stelmaszczyk, Piotr Jarosik, Mikhail Pavlov, Sergey Kolesnikov, Sergey Plis, Zhibo Chen, Zhizheng Zhang, Jiale Chen, Jun Shi, Zhuobin Zheng, Chun Yuan, Zhihui Lin, Henryk Michalewski, Piotr Miłoś, Błażej Osiński, Andrew Melnik, Malte Schilling, Helge Ritter, Sean Carroll, Jennifer Hicks, Sergey Levine, Marcel Salathé, Scott Delp

Figure 1 for Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments
Figure 2 for Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments
Figure 3 for Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments
Figure 4 for Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments

In the NIPS 2017 Learning to Run challenge, participants were tasked with building a controller for a musculoskeletal model to make it run as fast as possible through an obstacle course. Top participants were invited to describe their algorithms. In this work, we present eight solutions that used deep reinforcement learning approaches, based on algorithms such as Deep Deterministic Policy Gradient, Proximal Policy Optimization, and Trust Region Policy Optimization. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each of the eight teams implemented different modifications of the known algorithms.

* 27 pages, 17 figures 
Viaarxiv icon

Run, skeleton, run: skeletal model in a physics-based simulation

Jan 28, 2018
Mikhail Pavlov, Sergey Kolesnikov, Sergey M. Plis

Figure 1 for Run, skeleton, run: skeletal model in a physics-based simulation
Figure 2 for Run, skeleton, run: skeletal model in a physics-based simulation
Figure 3 for Run, skeleton, run: skeletal model in a physics-based simulation
Figure 4 for Run, skeleton, run: skeletal model in a physics-based simulation

In this paper, we present our approach to solve a physics-based reinforcement learning challenge "Learning to Run" with objective to train physiologically-based human model to navigate a complex obstacle course as quickly as possible. The environment is computationally expensive, has a high-dimensional continuous action space and is stochastic. We benchmark state of the art policy-gradient methods and test several improvements, such as layer normalization, parameter noise, action and state reflecting, to stabilize training and improve its sample-efficiency. We found that the Deep Deterministic Policy Gradient method is the most efficient method for this environment and the improvements we have introduced help to stabilize training. Learned models are able to generalize to new physical scenarios, e.g. different obstacle courses.

* Corrected typos and spelling 
Viaarxiv icon

Deep Attention Recurrent Q-Network

Dec 05, 2015
Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva

Figure 1 for Deep Attention Recurrent Q-Network
Figure 2 for Deep Attention Recurrent Q-Network
Figure 3 for Deep Attention Recurrent Q-Network
Figure 4 for Deep Attention Recurrent Q-Network

A deep learning approach to reinforcement learning led to a general learner able to train on visual input to play a variety of arcade games at the human and superhuman levels. Its creators at the Google DeepMind's team called the approach: Deep Q-Network (DQN). We present an extension of DQN by "soft" and "hard" attention mechanisms. Tests of the proposed Deep Attention Recurrent Q-Network (DARQN) algorithm on multiple Atari 2600 games show level of performance superior to that of DQN. Moreover, built-in attention mechanisms allow a direct online monitoring of the training process by highlighting the regions of the game screen the agent is focusing on when making decisions.

* 7 pages, 5 figures, Deep Reinforcement Learning Workshop, NIPS 2015 
Viaarxiv icon