Abstract:Cardiac Output (CO) is a key parameter in the diagnosis and management of cardiovascular diseases. However, its accurate measurement requires right-heart catheterization, an invasive and time-consuming procedure, motivating the development of reliable non-invasive alternatives using echocardiography. In this work, we propose a self-supervised learning (SSL) pretraining strategy based on SimCLR to improve CO prediction from apical four-chamber echocardiographic videos. The pretraining is performed using the same limited dataset available for the downstream task, demonstrating the potential of SSL even under data scarcity. Our results show that SSL mitigates overfitting and improves representation learning, achieving an average Pearson correlation of 0.41 on the test set and outperforming PanEcho, a model trained on over one million echocardiographic exams. Source code is available at https://github.com/EIDOSLAB/cardiac-output.
Abstract:Severe aortic stenosis is a common and life-threatening condition in elderly patients, often treated with Transcatheter Aortic Valve Implantation (TAVI). Despite procedural advances, paravalvular aortic regurgitation (PVR) remains one of the most frequent post-TAVI complications, with a proven impact on long-term prognosis. In this work, we investigate the potential of deep learning to predict the occurrence of PVR from preoperative cardiac CT. To this end, a dataset of preoperative TAVI patients was collected, and 3D convolutional neural networks were trained on isotropic CT volumes. The results achieved suggest that volumetric deep learning can capture subtle anatomical features from pre-TAVI imaging, opening new perspectives for personalized risk assessment and procedural optimization. Source code is available at https://github.com/EIDOSLAB/tavi.