Ecole Polytechnique, AUEB
Abstract:Classical recommender systems often assume that historical data are stationary and fail to account for the dynamic nature of user preferences, limiting their ability to provide reliable recommendations in time-sensitive settings. This assumption is particularly problematic in finance, where financial products exhibit continuous changes in valuations, leading to frequent shifts in client interests. These evolving interests, summarized in the past client-product interactions, see their utility fade over time with a degree that might differ from one client to another. To address this challenge, we propose a time-dependent collaborative filtering algorithm that can adaptively discount distant client-product interactions using personalized decay functions. Our approach is designed to handle the non-stationarity of financial data and produce reliable recommendations by modeling the dynamic collaborative signals between clients and products. We evaluate our method using a proprietary dataset from BNP Paribas and demonstrate significant improvements over state-of-the-art benchmarks from relevant literature. Our findings emphasize the importance of incorporating time explicitly in the model to enhance the accuracy of financial product recommendation.
Abstract:Time series forecasting lies at the core of important real-world applications in many fields of science and engineering. The abundance of large time series datasets that consist of complex patterns and long-term dependencies has led to the development of various neural network architectures. Graph neural network approaches, which jointly learn a graph structure based on the correlation of raw values of multivariate time series while forecasting, have recently seen great success. However, such solutions are often costly to train and difficult to scale. In this paper, we propose TimeGNN, a method that learns dynamic temporal graph representations that can capture the evolution of inter-series patterns along with the correlations of multiple series. TimeGNN achieves inference times 4 to 80 times faster than other state-of-the-art graph-based methods while achieving comparable forecasting performance
Abstract:The complex nature of big biological systems pushed some scientists to classify its understanding under the inconceivable missions. Different leveled challenges complicated this task, one of is the prediction of a protein's function. In recent years, significant progress has been made in this field through the development of various machine learning approaches. However, most existing methods formulate the task as a multi-classification problem, i.e assigning predefined labels to proteins. In this work, we propose a novel approach, \textbf{Prot2Text}, which predicts a protein function's in a free text style, moving beyond the conventional binary or categorical classifications. By combining Graph Neural Networks(GNNs) and Large Language Models(LLMs), in an encoder-decoder framework, our model effectively integrates diverse data types including proteins' sequences, structures, and textual annotations. This multimodal approach allows for a holistic representation of proteins' functions, enabling the generation of detailed and accurate descriptions. To evaluate our model, we extracted a multimodal protein dataset from SwissProt, and demonstrate empirically the effectiveness of Prot2Text. These results highlight the transformative impact of multimodal models, specifically the fusion of GNNs and LLMs, empowering researchers with powerful tools for more accurate prediction of proteins' functions. The code, the models and a demo will be publicly released.
Abstract:Graph neural networks have become the standard approach for dealing with learning problems on graphs. Among the different variants of graph neural networks, graph attention networks (GATs) have been applied with great success to different tasks. In the GAT model, each node assigns an importance score to its neighbors using an attention mechanism. However, similar to other graph neural networks, GATs aggregate messages from nodes that belong to different classes, and therefore produce node representations that are not well separated with respect to the different classes, which might hurt their performance. In this work, to alleviate this problem, we propose a new technique that can be incorporated into any graph attention model to encourage higher attention scores between nodes that share the same class label. We evaluate the proposed method on several node classification datasets demonstrating increased performance over standard baseline models.
Abstract:Graph neural networks (GNNs) have recently become the standard approach for learning with graph-structured data. Prior work has shed light into their potential, but also their limitations. Unfortunately, it was shown that standard GNNs are limited in their expressive power. These models are no more powerful than the 1-dimensional Weisfeiler-Leman (1-WL) algorithm in terms of distinguishing non-isomorphic graphs. In this paper, we propose Path Neural Networks (PathNNs), a model that updates node representations by aggregating paths emanating from nodes. We derive three different variants of the PathNN model that aggregate single shortest paths, all shortest paths and all simple paths of length up to K. We prove that two of these variants are strictly more powerful than the 1-WL algorithm, and we experimentally validate our theoretical results. We find that PathNNs can distinguish pairs of non-isomorphic graphs that are indistinguishable by 1-WL, while our most expressive PathNN variant can even distinguish between 3-WL indistinguishable graphs. The different PathNN variants are also evaluated on graph classification and graph regression datasets, where in most cases, they outperform the baseline methods.
Abstract:In recent years, graph neural networks (GNNs) have achieved great success in the field of graph representation learning. Although prior work has shed light into the expressiveness of those models (\ie whether they can distinguish pairs of non-isomorphic graphs), it is still not clear what structural information is encoded into the node representations that are learned by those models. In this paper, we investigate which properties of graphs are captured purely by these models, when no node attributes are available. Specifically, we study four popular GNN models, and we show that two of them embed all nodes into the same feature vector, while the other two models generate representations that are related to the number of walks over the input graph. Strikingly, structurally dissimilar nodes can have similar representations at some layer $k>1$, if they have the same number of walks of length $k$. We empirically verify our theoretical findings on real datasets.
Abstract:The era of transfer learning has revolutionized the fields of Computer Vision and Natural Language Processing, bringing powerful pretrained models with exceptional performance across a variety of tasks. Specifically, Natural Language Processing tasks have been dominated by transformer-based language models. In Natural Language Inference and Natural Language Generation tasks, the BERT model and its variants, as well as the GPT model and its successors, demonstrated exemplary performance. However, the majority of these models are pretrained and assessed primarily for the English language or on a multilingual corpus. In this paper, we introduce GreekBART, the first Seq2Seq model based on BART-base architecture and pretrained on a large-scale Greek corpus. We evaluate and compare GreekBART against BART-random, Greek-BERT, and XLM-R on a variety of discriminative tasks. In addition, we examine its performance on two NLG tasks from GreekSUM, a newly introduced summarization dataset for the Greek language. The model, the code, and the new summarization dataset will be publicly available.
Abstract:Alzheimer's dementia (AD) affects memory, thinking, and language, deteriorating person's life. An early diagnosis is very important as it enables the person to receive medical help and ensure quality of life. Therefore, leveraging spontaneous speech in conjunction with machine learning methods for recognizing AD patients has emerged into a hot topic. Most of the previous works employ Convolutional Neural Networks (CNNs), to process the input signal. However, finding a CNN architecture is a time-consuming process and requires domain expertise. Moreover, the researchers introduce early and late fusion approaches for fusing different modalities or concatenate the representations of the different modalities during training, thus the inter-modal interactions are not captured. To tackle these limitations, first we exploit a Neural Architecture Search (NAS) method to automatically find a high performing CNN architecture. Next, we exploit several fusion methods, including Multimodal Factorized Bilinear Pooling and Tucker Decomposition, to combine both speech and text modalities. To the best of our knowledge, there is no prior work exploiting a NAS approach and these fusion methods in the task of dementia detection from spontaneous speech. We perform extensive experiments on the ADReSS Challenge dataset and show the effectiveness of our approach over state-of-the-art methods.
Abstract:The identification of cancer genes is a critical, yet challenging problem in cancer genomics research. Recently, several computational methods have been developed to address this issue, including deep neural networks. However, these methods fail to exploit the multilayered gene-gene interactions and provide little to no explanation for their predictions. Results: In this study, we propose an Explainable Multilayer Graph Neural Network (EMGNN) approach to identify cancer genes, by leveraging multiple gene-gene interaction networks and multi-omics data. Compared to conventional graph learning methods, EMGNN learned complementary information in multiple graphs to accurately predict cancer genes. Our method consistently outperforms existing approaches while providing valuable biological insights into its predictions. We further release our novel cancer gene predictions and connect them with known cancer patterns, aiming to accelerate the progress of cancer research
Abstract:Graph autoencoders (GAE) and variational graph autoencoders (VGAE) emerged as powerful methods for link prediction (LP). Their performances are less impressive on community detection (CD), where they are often outperformed by simpler alternatives such as the Louvain method. It is still unclear to what extent one can improve CD with GAE and VGAE, especially in the absence of node features. It is moreover uncertain whether one could do so while simultaneously preserving good performances on LP in a multi-task setting. In this workshop paper, summarizing results from our journal publication (Salha-Galvan et al. 2022), we show that jointly addressing these two tasks with high accuracy is possible. For this purpose, we introduce a community-preserving message passing scheme, doping our GAE and VGAE encoders by considering both the initial graph and Louvain-based prior communities when computing embedding spaces. Inspired by modularity-based clustering, we further propose novel training and optimization strategies specifically designed for joint LP and CD. We demonstrate the empirical effectiveness of our approach, referred to as Modularity-Aware GAE and VGAE, on various real-world graphs.